Hydrodynamic Coherence and Vortex Solutions of the Euler–Helmholtz Equation

Article
  • 7 Downloads

Abstract

The form of the general solution of the steady-state Euler–Helmholtz equation (reducible to the Joyce–Montgomery one) in arbitrary domains on the plane is considered. This equation describes the dynamics of vortex hydrodynamic structures.

Keywords

Joyce–Montgomery equation Euler equation vortex structures Gibbs measure statistical integral conformal mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. E. Perry, T. T. Lim, M. S. Chong, and E. W. Tex, “The fabric of turbulence,” AIAA Paper 80, 1358 (1980).Google Scholar
  2. 2.
    M. Lesieur, Turbulence in Fluids (Kluwer Academic, Dordrecht, 1997).CrossRefMATHGoogle Scholar
  3. 3.
    A. K. M. Hussain, “Role of coherent structures in turbulent shear flows,” Proc. Indian Acad. Sci. (Eng. Sci.) 4, Part 2, 129–175 (1981).Google Scholar
  4. 4.
    B. W. van de Fliert and E. van Groesen, “On variational principles for coherent vortex structures,” Appl. Sci. Res. 51, 399–403 (1993).CrossRefMATHGoogle Scholar
  5. 5.
    E. R. Fledderus and E. van Groesen, “Deformation of coherent structures,” Rep. Prog. Phys. 59, 511–600 (1996).CrossRefMATHGoogle Scholar
  6. 6.
    B. W. van de Fliert and E. van Groesen, “Monopolar vortices as relative equilibria and their dissipative decay,” Nonlinearity 5, 473–495 (1992).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    E. van Groesen, “Time-asymptotics and the self-organization hypothesis for 2D Navier–Stokes equations,” Phys. A 148, 312–330 (1988).CrossRefMATHGoogle Scholar
  8. 8.
    L. Onsager, “Statistical hydrodynamics,” Nuovo Cimento Suppl. 6, 279–289 (1949).MathSciNetCrossRefGoogle Scholar
  9. 9.
    G. Batchelor, “Steady laminar flow with closed streamlines at large Reynolds number,” J. Fluid Mech. 1, 177–190 (1957).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    M. K.-H. Kiessling, “Statistical mechanics of classical particles with logarithmic interactions,” Commun. Pure Appl. Math. 46, 27–56 (1993).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    L. L. Helms, Introduction to Potential Theory (Wiley Interscience, New York, 1969).MATHGoogle Scholar
  12. 12.
    M. Brelot, Éléments de la théorie classique du potentiel (Centre de Documentation Universitaire, Paris, 1961).MATHGoogle Scholar
  13. 13.
    D. Smets and J. V. Schaftingen, “Desingularization of vortices for the Euler equation,” Arch. Ration Mech. Anal. 198, 869–925 (2010).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    C. Neri, “Statistical mechanics of the N-point vortex system with random intensities on,” Electr. J. Differ. Equations 2005 (92), 1–26 (2005).MathSciNetMATHGoogle Scholar
  15. 15.
    O. Rey, “The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent,” J. Funct. Anal. 89, 1–52 (1990).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    E. Caglioti, P. L. Lions, C. Marchioro, and M. Pulvirenti, “A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description,” Commun. Math. Phys. 143, 501–525 (1992).MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    C. Neri, “M canique statistique des syst mes de vortex ponctuels intensiti s al atoires sur un domaine born,” Ann. Inst. H. Poincare. Sec. A 21, 381–399 (2004).CrossRefGoogle Scholar
  18. 18.
    J. Messer and H. Spohn, “Statistical mechanics of the isothermal Lane–Emden equation,” J. Stat. Phys. 29 (3), 561–578 (1982).MathSciNetCrossRefGoogle Scholar
  19. 19.
    N. Cohen and J. V. T. Benavides, “Explicit radial Bratu solutions in dimension,” UNICAMP IMECC Report 22–07. http://www1.ime.unicamp.br/relpesq/2007/pdf/rp22-07.ps.Google Scholar
  20. 20.
    I. M. Gel’fand, “Some problems in the theory of quasilinear equations,” Usp. Mat. Nauk 14 (2), 87–158 (1959).MATHGoogle Scholar
  21. 21.
    J. Jacobsen and K. Schmitt, “The Liouville–Bratu–Gelfand problem for radial operators,” J. Differ. Equations 184, 283–298 (2002).MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    S. S. Lin, “On the existence of positive radial solutions for nonlinear elliptic equations in annular domains,” J. Differ. Equations 81, 221–233 (1989).MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    C. Bandle, Isoperimetric Inequalities and Applications (Pitman, London, 1980).MATHGoogle Scholar
  24. 24.
    V. H. Weston, “On the asymptotic solution of a partial differential equation with an exponential nonlinearity,” SIAM J. Math. 9 (6), 1030–1053 (1978).MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    K. Nagasaki and T. Suzuki, “Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially-dominated nonlinearities,” Asymptotic Anal. 3, 173–188 (1990).MathSciNetMATHGoogle Scholar
  26. 26.
    E. J. Routh, “Some applications of conjugate functions,” Proc. London Math. Soc. 12 (170/171), 73–89 (1881).MathSciNetMATHGoogle Scholar
  27. 27.
    A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists (Chapman and Hall/CRC, Boca Raton, 2002).MATHGoogle Scholar
  28. 28.
    T. Suzuki, “Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity,” Ann. Inst. Henri Poincare 9 (4), 367–397 (1992).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations