Advertisement

Thermophysics and Aeromechanics

, Volume 26, Issue 4, pp 561–579 | Cite as

Prediction of thermal conductivity of liquid and vapor refrigerants for pure and their binary, ternary mixtures using artificial neural network

  • N. Ghalem
  • S. Hanini
  • M. W. Naceur
  • M. Laidi
  • A. AmraneEmail author
Article
  • 4 Downloads

Abstract

The determination of thermophysical properties of hydrofluorocarbons (HFCS) is very important, especially the thermal conductivity. The present work investigated the potential of an artificial neural network (ANN) model to correlate the thermal conductivity of (HFCS) at (169.87-533.02) K, (0.047-68.201) MPa, and (0.0089-0.1984) W/(m·K) temperature, pressure, and thermal conductivity ranges, respectively, of 11 systems from 3 different categories including five pure systems (R32, R125, R134a, R152a, R143a), four binary mixtures systems (R32 + R125, R32 + R134a, R125 + R134a, R125 + R143a), and two ternary mixtures systems (R32 + R125 + R134a, R125 + R134a + R143a). Each one received 1817, 794 and 616 data points, respectively. The application of this model for these 3227 data points of liquid and vapor at several temperatures and pressures allowed to train, validate and test the model. This study showed that ANN models represent a good alternative to estimate the thermal conductivity of different refrigerant systems with a good accuracy. The squared correlation coefficients of thermal conductivity predicted by ANN were R2 = 0.998 with an acceptable level of accuracy of RMSE = 0.0035 and AAD = 0.002 %. The results of applying the trained neural network model to the test data indicate that the method has a highly significant prediction capability.

Keywords

refrigerant pure system mixtures thermal conductivity artificial neural network predictive model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    World Meteorological Organization, Montreal protocol on substances that deplete the ozone layer report, WMO Bull., 1988, Vol. 37, P. 94–97.Google Scholar
  2. 2.
    J.W. Ramsdell, G.L. Colice, B.P. Ekholm, and N.M. Klinger, Cumulative dose response study comparing HFA-134a albuterol sulfate and conventional CFC albuterol in patients with asthma, Ann. of Allergy Asthma Immunol., 1998, Vol. 81, P. 593–599.CrossRefGoogle Scholar
  3. 3.
    W.T. Tsai, An overview of environmental hazards and exposure risk of hydrofluorocarbons (HFCs),Chemosphere, 2005, Vol. 61, P. 1539–1547.ADSCrossRefGoogle Scholar
  4. 4.
    World Meteorological Organization (WMO), 2007. Scientific Assessment of Ozone Depletion: 2006, Global Ozone, Research and Monitoring Project, Report 50, Switzerland, Geneva.Google Scholar
  5. 5.
    World Meteorological Organization (WMO), 2003, Scientific Assessment of ozone depletion: 2002, Global Ozone, Research and Monitoring Project, Report 47, Switzerland, Geneva.Google Scholar
  6. 6.
    C.H. Bridgeman, J.A. Pyle, and D.E.J. Shallcross, A three-dimensional model calculation of the ozone depletion potential of 1-bromopropane (1-C3H7Br), Geophys. Res., 2000, Vol. 105, P. 493–426, 502.CrossRefGoogle Scholar
  7. 7.
    S.C. Olsen, B.J. Hannegan, X. Zhu, and M.J. Prather, Evaluating ozone depletion from very short-lived halo-carbons, Geophys. Res. Lett., 2000, Vol. 27, P. 1475–1478.ADSCrossRefGoogle Scholar
  8. 8.
    D.J. Wuebbles, K.O. Patten, M.T. Johnson, and R.J. Kotamarthi, The new methodology for ozone depletion potentials of short-lived compounds: n-propyl bromide as an example, Geophys. Res., 2001, Vol. 106, P. 551–571.CrossRefGoogle Scholar
  9. 9.
    P.A. Newman, J.S. Daniel, D.W. Waugh, and E.R. Nash, A new formulation of equivalent effective stratospheric chlorine (EESC), Atmos. Chem. Phys., 2007, Vol. 7, P. 4537–4552.ADSCrossRefGoogle Scholar
  10. 10.
    P.W. Bridgman, conductivity of liquids under pressure, Proc. Am. Acad. Art Sci., 1923, Vol. 59, P. 141–169.CrossRefGoogle Scholar
  11. 11.
    S.R.S. Sastri and K.K. Rao, A new temperature thermal conductivity relationship for predicting saturated liquid thermal conductivity, J. Chem. Eng., 1999, Vol. 74, P. 161–169.CrossRefGoogle Scholar
  12. 12.
    B.E. Poling, J.M. Prausnitz, and J.P. O’Connell, The Properties of Gases and Liquids, 5th Edition, McGraw-Hill, New York, 2001.Google Scholar
  13. 13.
    F. Gharagheizi, P. Ilani-Kashkouli, M. Sattari, A.H. Mohammadi, D. Ramjugernath, and D. Richon, Development of a quantitative structure liquid thermal conductivity relationship for pure chemical compounds, Fluid Phase Equilib., 2013, Vol. 355, P. 52–80.CrossRefGoogle Scholar
  14. 14.
    F. Gharagheizi, P. Ilani-Kashkouli, M. Sattari, A.H. Mohammadi, D. Ramjugernath, and D. Richon, Development of a general model for determination of thermal conductivity of liquid chemical compounds at atmospheric pressure, J. AIChE, 2013, Vol. 59, P. 1702–1708.CrossRefGoogle Scholar
  15. 15.
    G.Di Nicola, E. Ciarrocchi, M. Pierantozzi, and R. Stryjek, A new equation for the thermal conductivity prediction of pure liquid compounds, J. Therm. Anal. Calorim., 2014,  https://doi.org/10.1007/s10973-013-3422-7.Google Scholar
  16. 15.
    J. Yata, Y. Ueda, and M. Hori, Equations for the thermal conductivity of R-32, R-125, R-134a, and R-143a, Int. J. Thermophys., 2005, Vol. 26, P. 1423–1435.ADSCrossRefGoogle Scholar
  17. 17.
    L. Shi, X.J. Liu, X. Wang, and M.S. Zhu, Prediction method for liquid thermal conductivity of refrigerant mixtures, Fluid Phase Equilib., 2000, Vol. 172, P. 293–306.CrossRefGoogle Scholar
  18. 18.
    W.W. Focke, Correlating thermal conductivity data for ternary liquid mixtures, Int. J. Thermophys., 2008, Vol. 29, P. 1342–1360.ADSCrossRefGoogle Scholar
  19. 19.
    M.G. He, Z.G. Liu, and J.M. Yin, New equation of state for transport properties: Calculation for the thermal conductivity and the viscosity of halogenated hydrocarbon refrigerants, Fluid Phase Equilib., 2002, Vol. 201, P. 309–320.CrossRefGoogle Scholar
  20. 20.
    M.J. Assael, N.K. Dalaouti, and K.E. Gialou, Measurements of the thermal conductivity of liquid R32, R124, R125, and R141b, Fluid Phase Equilib., 2000, Vol. 174, P. 203–211.CrossRefGoogle Scholar
  21. 21.
    G. Scalabrin, L. Piazza, M. Grigiante, and M. Baruzzo, Thermal conductivity modeling of refrigerant mixtures in a three-parameter corresponding states format, Int. J. Thermophys., 2005, Vol. 26, P. 399–412.ADSCrossRefGoogle Scholar
  22. 22.
    M.L. Huber, D.G. Friend, and J.F. Ely, Prediction of the thermal conductivity of refrigerants and refrigerant mixtures, Fluid Phase Equilib., 1992, Vol. 80, P. 249–261.CrossRefGoogle Scholar
  23. 23.
    M.O. McLinden, S.A. Klein, and R.A. Perkins, An extended corresponding states model for the thermal conductivity of refrigerants and refrigerant mixtures, Int. J. Refrigeration, 2000, Vol. 23, P. 43–63.CrossRefGoogle Scholar
  24. 24.
    S.M. Sami and J.D. Comeau, Study of viscosity and thermal conductivity effects on condensation characteristics of some new alternative refrigerant mixtures, Int. J. Energy Res., 2003, Vol. 27, P. 63–77.CrossRefGoogle Scholar
  25. 25.
    Y. Islamoglu, A new approach for the prediction of the heat transfer rate of the wire-on-tube type heat exchanger use of an artificial neural network model, Appl. Therm. Eng., 2003, Vol. 23, P. 243–249.CrossRefGoogle Scholar
  26. 26.
    J. Taskinen and J. Yliruusi, Prediction of physicochemical properties based on neural network modeling, Adv. Drug Deliv. Rev., 2003, Vol. 55, P. 1163–1183.CrossRefGoogle Scholar
  27. 27.
    L.H. Tsoukalas and R.E. Uhrig, Fuzzy and Neural Approaches in Engineering, John Wiley and Sons Inc., 1997.Google Scholar
  28. 28.
    S.A. Kalogirou, Applications of artificial neural networks for energy systems, Appl. Energy, 2000, Vol. 67, P. 17–35.CrossRefGoogle Scholar
  29. 29.
    C. Si-Moussa, S. Hanini, R. Derriche, M. Bouhedda, and A. Bouzidi, Prediction of high-pressure vapor liquid equilibrium of six binary systems, carbon dioxide with six esters, using an artificial neural network model, Brazilian J. Chem. Eng., 2008, Vol. 25, P. 183–199.CrossRefGoogle Scholar
  30. 30.
    M.Y. Rafiq, G. Bugmann, and D.J. Easterbrook, Neural network design for engineering applications, Comput. Struct., 2001, Vol. 79, P. 1541–1552.CrossRefGoogle Scholar
  31. 31.
    MathWorks, Neural Network Toolbox User’s Guide. MATLAB 7.0, Release 14, MATLAB Manual, 2004.Google Scholar
  32. 32.
    A. Witek-Krowiak, K. Chojnacka, D. Podstawczyk, A. Dawiec, and K. Pokomeda, Application of response surface methodology and artificial neural network methods in modeling and optimization of biosorption process, Bioresour. Technol., 2014, doi:10.1016/j.biortech.2014.01.021.Google Scholar
  33. 33.
    S.A. Kalogirou, Artificial intelligence for the modeling and control of combustion processes, Prog. Energy. Combust. Sci, 2003, Vol. 29, P. 515–566.CrossRefGoogle Scholar
  34. 34.
    A. Mellit and S.A. Kalogirou, Artificial intelligence techniques for photovoltaic applications, a review, Prog. Energy Combust. Sci., 2008, Vol. 34, P. 574–632.CrossRefGoogle Scholar
  35. 35.
    R. Haghbakhsh, H. Adib, P. Keshavarz, M. Koolivand, and S. Keshtkari, Development of an artificial neural network model for the prediction of hydrocarbon density at high-pressure, high-temperature conditions, Termochim. Acta., 2013, Vol. 551, P. 124–130.CrossRefGoogle Scholar
  36. 36.
    F. Amato, J.L. Gonzalez-Hernandez, and J. Havel, Artificial neural networks combined with experimental design: a “soft” approach for chemical kinetics. Talanta, 2012, Vol. 93, P. 72–78.CrossRefGoogle Scholar
  37. 37.
    Y. Tanaka, M. Nakata, and T. Makita, Thermal conductivity of gaseous HFC-134a, HFC-143a, HCFC-141b, and HCFC-142b, Int. J. Thermophys., 1991, Vol. 12, P. 949–963.ADSCrossRefGoogle Scholar
  38. 38.
    G.K. Lavrenchenko, G.Ya. Ruvinskij, S.V. Iljushenko, V.V. Kanaev, Thermophysical properties of refrigerant R134a, Int. J. Refrigeration., 1992, Vol. 15, P. 386–392.CrossRefGoogle Scholar
  39. 39.
    R.A. Perkins, A. Laesecke, and C.A. Nieto Castro, Polarized transient hot wire thermal conductivity measurements, Fluid Phase Equilib., 1992, Vol. 80, P. 275–286.CrossRefGoogle Scholar
  40. 40.
    U. Gross, Y.W. Song, and E. Hahne, Thermal conductivity of the new refrigerants R134a, R152a, and R123 measured by the transient hot-wire method, Int. J. Thermophys., 1992, Vol. 13, P. 957–983.ADSCrossRefGoogle Scholar
  41. 41.
    A. Laeseck, R.A. Perkin, and C.A. Nieto Castro, Thermal conductivity of R134a, Fluid Phase Equilib., 1992, Vol. 80, P. 263–274.CrossRefGoogle Scholar
  42. 42.
    R. Yamamoto, S. Matsuo, and Y. Tanaka, Thermal conductivity of halogenated ethanes, HFC-134a, HCFC-123, and HCFC-141h, Int. J. Thermophys., 1993, Vol. 14, P.79–90.ADSCrossRefGoogle Scholar
  43. 43.
    M.J. Assael and E. Karagiannidis, Measurements of the thermal conductivity of R22, R123, and R134a in the temperature range 250–340 K at pressures up to 30 MPa, Int. J. Thermophys., 1993, Vol. 14, P. 183–197.ADSCrossRefGoogle Scholar
  44. 44.
    O.B. Tsvetkov, Yu.A. Laptev, and A.G. Asambaev, Thermal conductivity of refrigerants R123, R134a, and R125 at low temperatures, Int. J. Thermophys., 1994, Vol. 15, P. 203–214.ADSCrossRefGoogle Scholar
  45. 45.
    U. Hammerschmidt, Thermal conductivity of a wide range of alternative refrigerants measured with an improved guarded Hot-Plate Apparatus, Int. J. Thermophys., 1995, Vol. 16, P. 1203–121.ADSCrossRefGoogle Scholar
  46. 46.
    S.T. Ro, J.Y. Kim, and D.S. Kim, Thermal conductivity of R32 and Its mixture with R134a, Int. J. Thermophys., 1995, Vol. 16, P. 1193–1201.ADSCrossRefGoogle Scholar
  47. 47.
    A.N. Gurova, U.V. Mardolcar, and C.A. Nieto Castro, The thermal conductivity of Liquid 1,1,1,2-Tetrafluoro-ethane (HFC 134a), Int. J. Thermophys., 1997, Vol. 18, P. 1077–1087.ADSCrossRefGoogle Scholar
  48. 48.
    S.U. Jeong, M.S. Kim, and S.T. Ro, Liquid thermal conductivity of binary mixtures of pentafluoroethane (R125) and 1,1,1,2-tetrafluoroethane (R134a), Int. J. Thermophys., 1999, Vol. 20, P. 55–62.CrossRefGoogle Scholar
  49. 49.
    B.Le Neindre and Y. Garrabos, Measurements of the thermal conductivity of HFC-134a in the temperature range from 300 to 530 K and at pressures up to 50 MPa, Int. J. Thermophys., 1999, Vol. 20, P. 1379–1401.CrossRefGoogle Scholar
  50. 50.
    A.V. Baginsky and Shipitsyna, Thermal conductivity and thermal diffusivity of the R134a refrigerant in the liquid state, Thermophysics and Aeromechanics, 2009, Vol. 16, No. 2, P. 267–273.ADSCrossRefGoogle Scholar
  51. 51.
    Y. Tanaka, S. Matsuo, and S. Taya, Gaseous thermal conductivity of difluoromethane (HFC-32), pentafluoroethane (HFC-125), and their mixtures, Int. J. Thermophys., 1995, Vol. 16, P. 121–131.ADSCrossRefGoogle Scholar
  52. 52.
    M.J. Assael and L. Karagiannidis, Measurements of the thermal conductivity of liquid R32, R124, R125, and R141b, Int. J. Thermophys., 1995, Vol. 16, P. 851–865.ADSCrossRefGoogle Scholar
  53. 53.
    O.B. Tsvetkov, A.V. Kletski, Yu.A. Laptev, A.J. Asambaev, and I.A. Zausaev, Thermal conductivity and PVT measurements of Pentafluoroethane (refrigerant HFC-125), Int. J. Thermophys., 1995, Vol. 16, P. 1185–1192.ADSCrossRefGoogle Scholar
  54. 54.
    S.T. Ro, M.S. Kim, and S.U. Jeong, Liquid thermal conductivity of binary mixtures of difluoromethane (R32) and pentafluoroethane (R125), Int. J. Thermophys., 1997, Vol. 18, P. 991–999.ADSCrossRefGoogle Scholar
  55. 55.
    U. Gross and Song, Thermal conductivities of new refrigerants R125 and R32 measured by the transient hot-wire method, Int. J. Thermophys., 1996, Vol. 17, P. 607–619.ADSCrossRefGoogle Scholar
  56. 56.
    S.H. Kim, D.S. Kim, M.S. Kim, and S.T. Ro, The thermal conductivity of R22, R142b, R152a, and their mixtures in the liquid state, Int. J. Thermophys., 1993, Vol. 14, P. 937–950.ADSCrossRefGoogle Scholar
  57. 57.
    O.B. Tsvetkov, Yu.A. Laptev, and A.G. Asambaev, The thermal conductivity of binary mixtures of liquid R22 with R142b and R152a at low temperatures, Int. J. Thermophys., 1996, Vol. 17, P. 597–606.ADSCrossRefGoogle Scholar
  58. 58.
    A.N. Gurova, U.V. Mardolcar, and C.A. Nieto Castro, Thermal conductivity of 1,1-difluoroethane (HFC-152a), Int. J. Thermophys., 1999, Vol. 20, P. 63–72.CrossRefGoogle Scholar
  59. 59.
    S.H. Lee, M.S. Kim, and S.T. Ro, Thermal conductivity of 1,1,1-trifluoroethane (R143a) and R404A in the liquid phase, J. Chem. Eng., 2001, Vol. 46, P. 1013–1015.Google Scholar
  60. 60.
    X. Gao, Y. Nagasaka, and A. Nagashima, Thermal conductivity of binary refrigerant mixtures of HFC-32/125 and HFC-32/134a in the liquid phase, Int. J. Thermophys., 1999, Vol. 20, P.1403–1415.CrossRefGoogle Scholar
  61. 61.
    V.Z. Geller, B.V. Nemzer, and U.V. Cheremnykh, Thermal conductivity of the refrigerant mixtures R404A, R407C, R410A, and R507A, Int. J. Thermophys., 2001, Vol. 22, P. 1035–1043.CrossRefGoogle Scholar
  62. 62.
    A.V. Baginsky and A.S. Shipitsyna, Thermal conductivity of liquid R507 refrigerant, Thermophysics and Aeromechanics, 2008, Vol. 15, No. 2, P. 291–295.ADSCrossRefGoogle Scholar
  63. 63.
    O.I. Verba, Thermal conductivity of refrigerant 507A in gaseous state*, Thermophysics and Aeromechanics, 2011, Vol. 18, No. 1, P. 151–154.CrossRefGoogle Scholar
  64. 64.
    X. Gao, Y. Nagasaka, and A. Nagashima, Thermal conductivity of ternary refrigerant mixtures of HFC-32/125/134a in the liquid phase, Int. J. Thermophys., 1999, Vol. 20, P. 1417–1424.CrossRefGoogle Scholar
  65. 65.
    S.U. Jeong, M.S. Kim, and S.T. Ro, Liquid thermal conductivity of ternary mixtures of difluoromethane (R32), pentafluoroethane (R125), and 1,1,1,2-tetrafluoroethane (R134a), Int. J. Thermophys., 2000, Vol. 21, P. 319–328.CrossRefGoogle Scholar
  66. 66.
    O.I. Verba, E.P. Raschektaeva, and S.V. Stankus, Experimental study of thermal conductivity of the R407C refrigerant in the vapor phase, High Temp., 2012, Vol. 50, P. 200–203.CrossRefGoogle Scholar
  67. 67.
    O.I. Verba, Thermal conductivity of gaseous refrigerant R 404A*, Thermophysics and Aeromechanics, 2007, Vol. 14, No. 2, P. 165–168.ADSCrossRefGoogle Scholar
  68. 68.
    A.V. Baginsky and A.S. Shipitsyna, Thermal conductivity of liquid refrigerant R404A*, Thermophysics and Aeromechanics, 2007, Vol. 14, No. 1, P. 63–66.ADSCrossRefGoogle Scholar
  69. 69.
    T. Makita, Y. Tanaka, Y. Morimoto, M. Noguchi, H. Kubota, Thermal conductivity of gaseous fluorocarbon refrigerants R 12, R 13, R 22, and R 23, under pressure, Int. J. Thermophys., 1981, Vol. 2, P. 249–268.ADSCrossRefGoogle Scholar
  70. 70.
    O.I. Verba, E.P. Raschektaeva, and S.V. Stankus, Thermal conductivity of refrigerant R-415A in the vapor phase, Thermophysics and Aeromechanics, 2013, Vol. 20, No. 4, P. 477–479.ADSCrossRefGoogle Scholar
  71. 71.
    O.I. Verba, E.P. Raschektaeva, and S.V. Stankus, Experimental study of thermal conductivity of refrigerant R-409A in vapor phase, Thermophysics and Aeromechanics, 2011, Vol. 18, No. 4, P. 661–664.ADSCrossRefGoogle Scholar

Copyright information

© N. Ghalem, S. Hanini, M.W. Naceur, M. Laidi, and A. Amrane 2019

Authors and Affiliations

  • N. Ghalem
    • 1
  • S. Hanini
    • 2
  • M. W. Naceur
    • 1
  • M. Laidi
    • 2
  • A. Amrane
    • 3
    Email author
  1. 1.University of BlidaBlidaAlgeria
  2. 2.University of MédéaMédéaAlgeria
  3. 3.University of RennesNational Higher School of ChemistryRennesFrance

Personalised recommendations