Thermophysics and Aeromechanics

, Volume 26, Issue 2, pp 295–311 | Cite as

3D modeling of the aerodynamics and heat transfer in the combustion chamber of the BKZ-75 boiler of the Shakhtinsk cogeneration plant

  • A. S. Askarova
  • S. A. Bolegenova
  • S. A. Bolegenova
  • V. Yu. MaximovEmail author
  • M. T. Beketaeva


The processes of heat and mass transfer occurring in real furnaces of the industrial TPS’s have been investigated with the aid of advanced methods of the three-dimensional computer modeling. The computational experiments have been done on the study of the aerodynamics of high-temperature flows and heat transfer characteristics at a combustion of a low-grade Karaganda coal of the KR200 brand in the combustion chamber of the BKZ-75 boiler of the Shakhtinsk TPS. As a result of the execution of numerical experiments, the aerodynamic pattern of high-temperature flows as well as the temperature distribution in the main cross sections of the furnace chamber and along its height have been obtained. The radiation heat flux on the combustion chamber walls has been computed by the methods of numerical modeling, which has enabled the determination of the regions of its maximum action on furnace shields. The obtained pattern of the distribution in the furnace space of the heat release intensity at combustion determines the regions of the maximum interaction of the fuel and oxidizer.

Key words

aerodynamics turbulence heat and mass transfer numerical modeling numerical experiment combustion chamber 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Müller, Numerische Berechnung dreidimensionaler turbulenter Strömungen in Dampferzeugern mit Wärmeübergang und chemischen Reaktionen am Beispiel des SNCR-Verfahrens und der Kohleverbrennung, Fortschritt-Berichte VDI-Verlag, 1992, Vol. 6, No. 268.Google Scholar
  2. 2.
    R. Leithner, Der Zero Emission Coal Alliance Prozess und ähnliche Kreisläufe, DECHEMA GVC-Jahrestagung, Karlsruhe, 2004.Google Scholar
  3. 3.
    A. Askarova, S. Bolegenova, V. Maximov, M. Beketayeva, and P. Safarik, Numerical modeling of pulverized coal combustion at thermal power plant boilers, Thermal Sci., 2015, Vol. 24, Iss. 3, P. 275–282.CrossRefGoogle Scholar
  4. 4.
    A.S. Askarova, V.E. Messerle, A.B. Ustimenko, S.A. Bolegenova, and V.Yu. Maksimov, Numerical simulation of the coal combustion process initiated by a plasma source, Thermophysics and Aeromechanics, 2014, Vol. 21, No. 6, P. 747–754.CrossRefGoogle Scholar
  5. 5.
    A.S. Askarova, S.A. Bolegenova, S. Bolegenova, A. Bekmukhamet, V. Maximov, and M. Beketayeva, Numerical experimenting of combustion in the real boiler of CHP, Int. J. Mech., 2013, Vol. 7, P. 343–352.Google Scholar
  6. 6.
    BP statistical review of world energy [Electronic resource],
  7. 7.
    V.E. Messerle, A.B. Ustimenko, A.S. Askarova, and A.O. Nagibin, Pulverized coal torch combustion in a furnace with plasma-coal system, Thermophysics and Aeromechanics, 2010, Vol. 17, No. 3, P. 435–444.CrossRefGoogle Scholar
  8. 8.
    A.S. Askarova, V.E. Messerle, A.B. Ustimenko, S.A. Bolegenova, V.Yu. Maximov, and Z.Kh. Gabitova, Numerical simulation of pulverized coal combustion in a power boiler furnace // High Temp., 2015, Vol. 53, No. 3, P. 445–452.CrossRefGoogle Scholar
  9. 9.
    M. Gorokhovski, A. Chtab-Desportes, I. Voloshina, and A. Askarova, Stochastic simulation of the spray formation assisted by a high pressure, in: 6th Intern. Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion. Book Series: AIP Conference Proceedings, 2010, Vol. 1207, P. 66–73.Google Scholar
  10. 10.
    S.V. Alekseenko, D.M. Markovich, V.M. Dulin, and L.M. Chikishev, Study of vortex core precession in combustion chamber, Thermophysics and Aeromechanics, 2013, Vol. 20, No. 6, P. 679–686.CrossRefGoogle Scholar
  11. 11.
    A.S. Askarova, A. Bekmukhamet, S.A. Bolegenova, M.T. Beketayeva, V.Yu. Maximov, Sh.S. Ospanova, and Z.K. Gabitova, Numerical modeling of turbulence characteristics of burning process of the solid fuel in BKZ-420-140-7c combustion chamber, Int. J. Mech., 2014, Vol. 8, P. 112–122.Google Scholar
  12. 12.
    R. Leithner, Energy conversion processes with intrinsic CO2 separation, Trans. Soc. Mining, Metallurgy and Exploration, 2005, Vol. 18, P. 135–145.Google Scholar
  13. 13.
    A.V. Gil and A.V. Starchenko, Influence of the internal moisture of coals on the temperature level in the furnaces of power-plant boilers, in: Thermophysical Foundations of Power Engineering Technologies: a Collection of Scientific Works of the All-Russian Scientific and Practical Conf. With International Participation, 24–26 June 2010, Tomsk, P. 226–233.Google Scholar
  14. 14.
    A.P. Burdukov, V.I. Popov, and V.A. Faleev, Study of mechanically activated coal combustion, Thermal Sci., 2009, Vol. 13, Iss. 1, P. 127–138.CrossRefGoogle Scholar
  15. 15.
    S.V. Alekseenko, I.S. Anufriev, M.S. Vigriyanov, V.M. Dulin, E.P. Kopyev, and O.V. Sharypov, Steam-enhanced regime for liquid hydrocarbons combustion: velocity distribution in the burner flame, Thermophysics and Aeromechanics, 2014, Vol. 21, No. 3, P. 393–396.CrossRefGoogle Scholar
  16. 16.
    A.S. Askarowa and M.A. Buchmann, Structure of the flame of fluidized-bed burners and combustion processes of high-ash coal, in: 18th Dutch-German Conf. on Flames, Germany, 1997, Vol. 1313, P. 241–244.Google Scholar
  17. 17.
    V.I. Polezhaev and A.V. Bune, Mathematical Modeling of Convective Heat and Mass Exchange Based on the Navier—Stokes equations, Nauka, Moscow, 1987.Google Scholar
  18. 18.
    B.E. Launder and D.B. Spalding, The numerical computation of turbulent flows, Comp. Methods Appl. Mech. Eng., 1974, Vol. 3, P. 269–289.CrossRefzbMATHGoogle Scholar
  19. 19.
    M.Yu. Chernetskiy, V.A. Kuznetsov, A.A. Dekterev, N.A. Abaimov, and A.F. Ryzhkov, Comparative analysis of turbulence model effect on description of the processes of pulverized coal combustion at flow swirl, Thermophysics and Aeromechanics, 2016, Vol. 23, No. 4, P. 615–626.CrossRefGoogle Scholar
  20. 20.
    L.D. Smoot and P.J. Smith, Coal combustion and gasification, Springer, U.S.A., 1985.CrossRefGoogle Scholar
  21. 21.
    A.V. Gil, A.V. Starchenko, and A.S. Zavorin, Application of Numerical Simulation of Furnace Processes for the Practice of Boilers Adaption to Off-design Fuel, STT, Tomsk, 2011.Google Scholar
  22. 22.
    C.T. Crowe, M.P. Sharma, and D.E. Stock, The particle source in cell (PSI Cell) model for gas droplet flows, Trans. ASME J. Fluids Engng, 1977, Vol. 99, P. 325–332.CrossRefGoogle Scholar
  23. 23.
    S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publ. Corp., New York, 1980.zbMATHGoogle Scholar
  24. 24.
    A.S. Askarova, V.E. Messerle, A.B. Ustimenko, S.A. Bolegenova, S.A. Bolegenova, V.Yu. Maximov, and A.B. Yergalieva, Reduction of noxious substance emissions at the pulverized fuel combustion in the combustor of the BKZ-160 boiler of the Almaty heat electropower station using the “Overfire Air” technology, Thermophysics and Aeromechanics, 2016, Vol. 23, No. 1, P. 125–134.CrossRefGoogle Scholar
  25. 25.
    R.J. Harmor, Kinetics of combustion of pulverized brown coal char, Combust. Flame, 1973, No. 21, P. 153–162.CrossRefGoogle Scholar
  26. 26.
    R.B. Edelman and O.F. Fortune, A quasi-global chemical kinetic model for the finite rate combustion of hydrocarbon fuels with application to turbulent burning and mixing in hypersonic engines and nozzles, AIAA 7th Aerospace Sciences Meeting, AIAA Paper, 1969, No. 69–86.Google Scholar
  27. 27.
    B.F. Magnussen, On the mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion, in: Works 16th Int. Symp. on Combustion, Pittsburgh, 1976, P. 719–729.Google Scholar
  28. 28.
    M.A. Field, D.W. Gill, B.B. Morgan, and P.G.W. Hawksley, Combustion of pulverized coal. England: BCURA. Leatherhead, Surrey, 1967, P. 155–174.Google Scholar
  29. 29.
    K. Görner, Technische Verbrennungssysteme — Grundlagen, Modellbildung, Simulation, Springer-Verlag, Berlin, Heidelberg, 1991.CrossRefGoogle Scholar
  30. 30.
    V.V. Salomatov, D.V. Krasinskii, Yu.A. Anikin, I.S. Anufriev, O.V. Sharypov, and Kh. Enhzhargal, Experimental and numerical investigation of aerodynamic characteristics of swirling flows in a model of the swirling-type furnace, J. Engng Phys. Thermophys., 2012, Vol. 85, No. 2, P. 282–293.CrossRefGoogle Scholar
  31. 31.
    A.S. Askarova, E.I. Karpenko, V.E. Messerle, and A.B. Ustimenko, Plasmachemical activation of the combustion of solid fuels, Khimiya vysokih energy, 2006, Vol. 40, No. 2, P. 141–148.Google Scholar
  32. 32.
    S. Vockrodt, R. Leithner, A. Schiller, A. Askarowa, and M. Buchman, Firing technique measures for increased efficiency and minimization of toxic emissions in Kasakh coal firing, in: 19th German Conf. on Flames, Germany, 1999, Vol. 1492, P. 93–97.Google Scholar
  33. 33.
    A.S. Askarova, S.A. Bolegenova, V.Yu. Maximov, A. Bekmukhamet, M.T. Beketaeva, and Z.Kh. Gabitova, Computational method for investigation of solid fuel combustion in combustion chambers of a heat power plant, High Temperature, 2015, Vol. 53, No. 5, P. 751–757.CrossRefGoogle Scholar
  34. 34.
    A.S. Askarova, E.I. Karpenko, Yu.E. Karpenko, V.E. Messerle, and A.B. Ustimenko, Mathematical modeling of the processes of solid fuel ignition and combustion at combustors of the power boilers, in: 7th Int. Fall Seminar on Propellants, Explosives and Pyrotechnics. Theory and Practice of Energetic Materials, China, 2007, Vol. 7, P. 672–683.Google Scholar
  35. 35.
    A.S. Askarova, A. Bekmukhamet, S. Bolegenova, Sh. Ospanova, B. Symbat, V. Maximov, M. Beketayeva, and A. Ergalieva, 3D modeling of heat and mass transfer during combustion of solid fuel in BKZ-420-140-7c combustion chamber of Kazakhstan, J. Appl. Fluid Mech., 2016, Vol. 9, No. 2, P. 699–709.CrossRefGoogle Scholar
  36. 36.
    F.A. Serant, V.V. Gordeev, Yu.M. Salomasov, V.F. Konyashkin, A.R. Kvrivishvili, E.G. Bartashuk, and A.V. Shikhotdinov, Two-stage combustion of a high-ash Ekibastuz coal on the modernized boiler PK-39-2M of power-plant unit 325 MW (st. No. 2) of the power plant of Joint-Stock Comp. “EEK”, town of Aksu (Kazakhstan), in: VIII All-Russian Conf. with Intern. Participation “Solid Fuel Combustion”, 13–16 November 2012, Novosibirsk, 2012, P. 92.1–92.9.Google Scholar
  37. 37.
    R. Viskanta and M.P. Mengüc, Radiation heat transfer in combustion systems, Prog. Energy Combustion Sci., 1987, No. 13, P. 97–160.CrossRefGoogle Scholar
  38. 38.
    A. de Marco and F. Lockwood, A new flux model for the calculation of radiation furnaces, Italian Flame Days, Sanremo, 1975, P. 1–13.Google Scholar
  39. 39.
    F. Lockwood and N. Shah, An improved flux model for calculation of radiation heat transfer in combustion chambers, ASME-Paper. Salt Lake City, 1976, P. 2–7.Google Scholar
  40. 40.
    V.V. Mitor, N.V. Kuznetsov, I.E. Dubovitsky, and E.S. Karasina, Thermal Computation of Boiler Aggregates: Normative Method, Energiya, Moscow, 1973.Google Scholar
  41. 41.
    B.K. Aliyarov and M.B. Aliyarova, Combustion of Kazakhstan Coals on the TPS and on Large Boiler rooms: Experience and Prospects, Almaty, 2011.Google Scholar

Copyright information

© A.S. Askarova, S.A. Bolegenova, S.A. Bolegenova, V.Yu. Maximov, and M.T. Beketaeva 2019

Authors and Affiliations

  • A. S. Askarova
    • 1
  • S. A. Bolegenova
    • 1
  • S. A. Bolegenova
    • 1
  • V. Yu. Maximov
    • 1
    Email author
  • M. T. Beketaeva
    • 2
  1. 1.Scientific Research Institute of Experimental and Theoretical PhysicsAlmatyKazakhstan
  2. 2.Al-Farabi Kazakh National UniversityAlmatyKazakhstan

Personalised recommendations