Thermophysics and Aeromechanics

, Volume 26, Issue 2, pp 179–194 | Cite as

Asymptotic boundary conditions for computing the position of laminar-turbulent transition by the eN-method

  • A. V. BoikoEmail author
  • K. V. Demyanko
  • Yu. M. Nechepurenko


The work is devoted to the use of asymptotic boundary conditions for engineering prediction of the laminar-turbulent transition position in hydrodynamic flows by the eN-method. It is shown that the asymptotic boundary conditions can significantly reduce the total computational cost.


boundary layer laminar-turbulent transition eN-method hydrodynamic stability governing equations for small disturbances local-parallel approach asymptotic boundary conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.V. Boiko, Yu.M. Nechepurenko, R.N. Zhuchkov, and A.S. Kozelkov, Laminar-turbulent transition prediction module for LOGOS package, Thermophysics and Aeromechanics, 2014, Vol. 21, No. 2, P. 191–210.CrossRefGoogle Scholar
  2. 2.
    A.V. Boiko, Yu.M. Nechepurenko, I.V. Abalakin, and V.G. Bobkov, Numerical prediction of laminar-turbulent transition on an airfoil, Russ. J. Numer. Analysis Math. Modelling, 2014, Vol. 29, No. 4, P. 205–218.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A.V. Boiko, K.V. Demyanko, and Yu.M. Nechepurenko, Asymptotic boundary conditions for the analysis of hydrodynamic stability of flows in regions with open boundaries, Keldysh Institute Preprints, 2018, No. 129.Google Scholar
  4. 4.
    A.V. Boiko, A.V. Dovgal, G.R. Grek, and V.V. Kozlov, Physics of Transitional Shear Flows, Springer, Berlin, 2012.CrossRefGoogle Scholar
  5. 5.
    F.P. Bertolotti and R.D. Joslin, Effect of far-field boundary conditions on boundary-layer transition, J. Comput. Phys., 1995, Vol. 118, No. 2, P. 392–395.CrossRefzbMATHGoogle Scholar
  6. 6.
    C.E. Grosch and S.A. Orszag, Numerical solution of problems in unbounded regions: Coordinate transforms, J. Comput. Phys., 1977, Vol. 25, No. 3, P. 273–295.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    J.P. Boyd, The optimization of convergence for Chebyshev polynomial methods in an unbounded domain, J. Comput. Phys., 1982, Vol. 45, No. 1, P. 43–79.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    W.B. Brown, A stability criterion for three-dimensional laminar boundary layers, Boundary Layer and Flow Control: Its Principles and Application, G.V. Lachmann (Ed.), Pergamon, Oxford, 1961, Vol. 2. P. 913–923.Google Scholar
  9. 9.
    A.G. Volodin and S.A. Gaponov, Stability of incompressible boundary layer, Izv. SO AN SSSR, Ser Tekhn. Nauk, 1970, Vol. 2, No. 8, P. 55–58.Google Scholar
  10. 10.
    P.W. Carpenter and A.D. Garrad, The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 1. Tollmien-Schlichting instabilities, J. Fluid Mech., 1985, Vol. 155, P. 465–510.CrossRefzbMATHGoogle Scholar
  11. 11.
    H.B. Keller, Numerical Solution of Two Point Boundary Value Problems, SIAM, Philadelphia, 1976.CrossRefGoogle Scholar
  12. 12.
    V.N. Zhigulev and A.M. Tumin, Onset of Turbulence. Dynamical Theory of the Excitation and Development of Boundary Layer Instabilities, Nauka, Novosibirsk, 1987.zbMATHGoogle Scholar
  13. 13.
    C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang, Spectral Methods. Fundamentals in Single Domains. Springer, Berlin, 2006.Google Scholar
  14. 14.
    J.A.C. Weideman and S.C. Reddy, A MATLAB differentiation matrix suite, ACM Trans. Math. Software, 2000, Vol. 26, No. 4, P. 465–519.MathSciNetCrossRefGoogle Scholar
  15. 15.
    A.V. Boiko, K.V. Demyanko, and Yu.M. Nechepurenko, On computing the location of laminar-turbulent transition in compressible boundary layers, Russ. J. Num. Anal. Math. Modelling, 2017, Vol. 32, No. 1, P. 1–12.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    G.H. Golub and Ch. Van Loan, Matrix Computations, 4th ed., The Johns Hopkins University Press, Baltimore, 2013.zbMATHGoogle Scholar
  17. 17.
    Yu.M. Nechepurenko, On the dimension reduction of linear differential-algebraic control systems, Doklady Mathematics, 2012, Vol. 86, No. 1, P. 457–459.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    K.V. Demyanko, Yu.M. Nechepurenko, and M. Sadkane, A Newton-type method for non-linear eigenproblems, Russ. J. Numer. Analysis Math. Modelling, 2017, Vol. 32, No. 4, P. 237–244.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK user’s guide, 3rd ed., SIAM, Philadelphia, 1999.CrossRefzbMATHGoogle Scholar
  20. 20.
    M. Gaster, A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic stability, J. Fluid Mech., 1962, Vol. 14, P. 222–224.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    J.L. Van Ingen, Transition, pressure gradient, suction, separation and stability theory, AGARD-CP-224 Laminar-turbulent transition, Copenhagen, 1977, P. 20.1–20.15.Google Scholar

Copyright information

© A.V. Boiko, K.V. Demyanko, and Yu.M. Nechepurenko 2019

Authors and Affiliations

  • A. V. Boiko
    • 1
    • 2
    Email author
  • K. V. Demyanko
    • 1
    • 3
  • Yu. M. Nechepurenko
    • 1
    • 3
  1. 1.Khristianovich Institute of Theoretical and Applied Mechanics SB RASNovosibirskRussia
  2. 2.Tyumen State UniversityTyumenRussia
  3. 3.Marchuk Institute of Numerical Mathematics RASMoscowRussia

Personalised recommendations