Advertisement

Stratigraphy and Geological Correlation

, Volume 26, Issue 6, pp 611–633 | Cite as

“Rejuvenated” Globular Phyllosilicates in the Riphean Deposits of the Olenek Uplift (North Siberia): Structural Identification and Geological Significance of Rb–Sr and K–Ar Age Data

  • T. S. ZaitsevaEmail author
  • I. M. Gorokhov
  • M. A. Semikhatov
  • A. B. Kuznetsov
  • T. A. Ivanovskaya
  • G. V. Konstantinova
  • O. V. Dorzhieva
Article

Abstract

The complex mineralogical–geochemical and isotope–geochronological study of globular phyllosilicates (GPS) of glauconite–illite series from Upper Proterozoic deposits of the Olenek Uplift (North Siberia) was performed. The Rb–Sr and K–Ar dates of the post-diagenetic transformation stages of GPS from the Osorkhayata and Arymass formations of the Solooly series were obtained. These dates along with the model cation distribution in the structure of minerals and comparison of the model results with the Mössbauer and IR spectroscopic data give grounds to assume that the post-diagenetic transformation of crystalline structure of GPS and their chemical and isotope compositions occurred during the Pre-Debengda hiatus (1280–1250 Ma).

Keywords:

globular phyllosilicates isotope age Mössbauer and infrared spectroscopy Upper Proterozoic Riphean diagenesis epigenesis 

Notes

ACKNOWLEDGMENTS

We are grateful to O.V. Yakovleva, who provided us with the data on Mössbauer spectroscopy and the 40Ar content in GPS samples; K.A. Stepanova for performing the classical silicate microanalysis; O.L. Galankina for the assistance in the performance of electron microprobe studies; and E.V. Pokrovskaya for X-ray study of minerals.

This work was performed within the framework of the Fundamental Research Programs of the Presidium of the Russian Academy of Sciences no. 17 (project no. 0135-2018-0050) and no. 19 (project no. 0153-2018-0009), and the research and development project no. 0135-2016-0021, and was supported by the Russian Foundation for Basic Research (project nos. 15-05-09095 and 17-05-00254).

Reviewers A.B. Kotov and V.V. Krupskaya

REFERENCES

  1. 1.
    Amirkhanov, Kh.I., Magataev, K.S., and Brandt, S.B., Radiological method of absolute age determination of sedimentary minerals, Dokl. Akad. Nauk SSSR, 1957, vol. 117, no. 4, pp. 675–677.Google Scholar
  2. 2.
    Aprub, S.V. and Levskii, L.K., Investigation of radiogenic argon retention in glauconites, Geokhimiya, 1976, no. 1, pp. 103–108.Google Scholar
  3. 3.
    Besson, G. and Drits, V.A., Refined relationships between chemical composition of dioctahedral fine-grained mica minerals and their infrared spectra within the oh stretching region; Part I, Identification of the oh stretching bands, Clays Clay Miner., 1997, vol. 45, no. 2, pp. 158–169.CrossRefGoogle Scholar
  4. 4.
    Clauer, N., Keppens, E., and Stille, P., Sr isotopic constraints on the process of glauconitization, Geology, 1992a, vol. 20, no. 2, pp. 133–136.CrossRefGoogle Scholar
  5. 5.
    Clauer, N., Stille, P., Keppens, E., and O’Neil, J.R., Le mécanisme de la glauconitisation: Apports de la géochimie isotopique du strontium, du néodyme et de l’oxygéne de glauconies récentes, C. R. Acad. Sci., 1992b, vol. 315, Ser. II, no. 3, pp. 321–327.Google Scholar
  6. 6.
    Cormier, R.F., Rubidium-strontium ages of glauconite and their application to the construction of an absolute post-Precambrian time scale, Ph.D. Thesis, Cambridge: Massachusetts Inst. Technol., 1956.Google Scholar
  7. 7.
    Cuadros, J., Sainz-Diaz, C., Ramirez, R., and Hernandez-Laguna, A., Analysis of Fe segregation in the octahedral sheet of bentonitic illite-smectite by means of FT-IR, 27Al MAS NMR and reverse Monte Carlo simulation, Am. J. Sci., 1999, vol. 299, no. 4, pp. 289–308.CrossRefGoogle Scholar
  8. 8.
    Curtis, G.H. and Reynolds, J.H., Notes of the potassium–argon dating of sedimentary rocks, Bull. Geol. Soc. Am., 1958, vol. 69, no. 2, pp. 151–160.CrossRefGoogle Scholar
  9. 9.
    Daynyak, L.G. and Drits, V.A., Interpretation of Mössbauer spectra of nontronite, celadonite, and glauconite, Clays Clay Miner., 1987, vol. 35, no. 5, pp. 363–372.CrossRefGoogle Scholar
  10. 10.
    Dainyak, L.G., Drits, V.A., and Heifits, L.M., Computer simulation of cation distribution in dioctahedral 2 : 1 layer silicates using IR-data: application to Mössbauer spectroscopy of a glauconite sample, Clays Clay Miner., 1992, vol. 40, no. 4, pp. 470–479.CrossRefGoogle Scholar
  11. 11.
    Dainyak, L.G., Drits, V.A., and Lindgreen, H., Computer simulation of octahedral cation distribution and interpretation of the Mössbauer Fe2+ components in dioctahedral trans-vacant micas, Eur. J. Mineral., 2004, vol. 16, no. 3, pp. 451–468.CrossRefGoogle Scholar
  12. 12.
    Dainyak, L.G., Rusakov, V.S., Sukhorukov, I.A., et al., An improved model for the interpretation of Mössbauer spectra of dioctahedral 2:1 trans-vacant Fe-rich micas: refinement of parameters, Eur. J. Mineral., 2009, vol. 21, no. 5, pp. 995–1008.CrossRefGoogle Scholar
  13. 13.
    Dainyak, L.G., Rusakov, V.S., Sukhorukov, I.A., et al., Comparison between the quasi-continuous quadrupole splitting distributions (QSD) for Mössbauer spectra of glauconites and the QSD-profiles simulated on the basis of crystal-chemical model, J. Phys. Conf. Ser., 2010, vol. 217, no. 1, p. 012052.CrossRefGoogle Scholar
  14. 14.
    Dainyak, L.G., Rusakov, V.S., Sukhorukov, I.A., and Drits, V.A., Octahedral cation distribution in glauconites from Southern Urals by combination of crystal-chemical model and quasi-continuous model-independent quadrupole splitting distributions (QSD) fitted to their Mössbauer spectra, Eur. J. Mineral., 2013, vol. 25, no. 3, pp. 405–414.CrossRefGoogle Scholar
  15. 15.
    Drits, V.A. and Kossovskaya, A.G., Clay minerals: micas and chlorites, in Tr. GIN AN SSSR. Vyp. 465 (Trans. Geol. Inst. USSR Acad. Sci. Vol. 465), Moscow: Nauka, 1991.Google Scholar
  16. 16.
    Drits, V.A., Dainyak, L.G., Muller, F., et al., Isomorphous cation distribution in celadonites, glauconites and Fe-illites determined by Infrared, Mössbauer and EXAFS spectroscopy, Clays Clay Miner., 1997, vol. 32, no. 2, pp. 153–179.CrossRefGoogle Scholar
  17. 17.
    Drits, V.A., Ivanovskaya T.A., Sakharov, B.A., et al., Nature of the structural and crystal-chemical heterogeneity of the Mg-rich glauconite (Riphean, Anabar uplift), Lithol. Miner. Resour., 2010, no. 6, pp. 620–643.Google Scholar
  18. 18.
    Drits, V.A., Sakharov, B.A., Ivanovskaya, T.A., and Pokrovskaya, E.V., Crystal-chemical microheterogeneity of Precambrian globular dioctahedral mica minerals, Lithol. Miner. Resour., 2013, vol. 48, no. 6, pp. 489–513.CrossRefGoogle Scholar
  19. 19.
    Drubetskoi, E.R. and Sprintsson, V.D., A new set of instrumental equipment for argon isotopic analysis, in Metodicheskie problemy yadernoi geologii (Methodological Problems of Nuclear Geology), Leningrad: Nauka, 1982, pp. 121–129.Google Scholar
  20. 20.
    Ericsson, T. and Wäppling, R., Texture effects in 3/2–1/2 Mössbauer spectra, J. Phys. Colloq., 1976, vol. 37, pp. 719–723.CrossRefGoogle Scholar
  21. 21.
    Farmer, V.C., The layer silicates, in Infrared Spectra of Minerals. Mon. 4, Farmer, V.C., Ed., Min. Soc. London, 1974, pp. 331–363.CrossRefGoogle Scholar
  22. 22.
    Fedonkin, M.A., Besskeletnaya fauna Venda i ee mesto v evolyutsii Metazoa (Vendian Non-Skeletal Fauna and its Role in the Evolution of Metazoa), Moscow: Nauka, 1987 [in Russian].Google Scholar
  23. 23.
    Garris, M.A., Kazakov, G.A., Keller, B.M., et al., Geochronological scale of the Upper Proterozoic (Riphean and Vendian), in Absolyutnyi vozrast geologicheskikh formatsii (Absolute Age of Geological Formations), Moscow: Nauka, 1964, pp. 431–456.Google Scholar
  24. 24.
    Golubkova, E.Yu., Raevskaya, E.G., and Kuznetsov, A.B., Lower Vendian microfossil assemblages of East Siberia: Significance for solving regional stratigraphic problems, Stratigr. Geol. Correl., 2010, vol. 18, no. 4, pp. 353–375.CrossRefGoogle Scholar
  25. 25.
    Golubkova, E.Yu., Zaitseva, T.S., Kuznetsov, A.B., et al., Microfossils and Rb–Sr age of glauconite in the key section of the Upper Proterozoic of the northeastern part of the Russian plate (Keltmen-1 borehole), Dokl. Earth Sci., 2015, vol. 462, no. 4, pp. 547–551.CrossRefGoogle Scholar
  26. 26.
    Gorokhov, I.M., Yakovleva, O.V., Semikhatov, M.A., and Ivanovskaya, T.A., Rb–Sr and K–Ar ages and Mössbauer spectra of globular phyllosilicates of glauconite group: the Middle Riphean Debengda Formation of the Olenek Uplift, North Siberia, Lithol. Miner. Resour., 1995, vol. 30, no. 6, pp. 615–631Google Scholar
  27. 27.
    Gorokhov, I.M., Yakovleva, O.V., Semikhatov, M.A., et al., “Rejuvenated” Al-glauconite in Vendian–Cambrian deposits of Podolian Dniester Region, Ukraine: Rb–Sr and K–Ar systematics and 57Fe Mössbauer spectra, Lithol. Miner. Resour., 1997, vol. 32, no. 6, pp. 541–570.Google Scholar
  28. 28.
    Guggenheim, S., Adams, J.M., Bain, D.C., et al., Summary of recommendations of Nomenclature Committees relevant to clay mineralogy: report of the Association Internationale Pour L’etude des Argiles (AIPEA) Nomenclature Committee for 2006, Clays Clay Miner., 2006, vol. 54, no. 6, pp. 761–772.CrossRefGoogle Scholar
  29. 29.
    Ivanovskaya, T.A., Globular phyllosilicates of the glauconite–illite composition in rocks of the Debengda Formation (Middle Riphean, Olenek Uplift), Litol. Polezn. Iskop., 1994, no. 6, pp. 101–113.Google Scholar
  30. 30.
    Ivanovskaya, T.A., Kats, A.G., Florova, Z.B., et al., Structure, lithology, and mineralogy of the basal part of the Lower Riphean in the Olenek Uplift (Osorkhayata Formation), Stratigr. Geol. Korrel., 1993, vol. 1, no. 4, pp. 84–92.Google Scholar
  31. 31.
    Ivanovskaya, T.A., Zaitseva, T.S., Gorokhov, I.M., and Konstantinova, G.V., Mineralogical, Mössbauer, and isotopic-geochronological study of Upper Riphean Al glauconites, Kildin Group, Srednii Peninsula, Lithol. Miner. Resour., 2003, vol. 48, no. 5, pp. 447–457.CrossRefGoogle Scholar
  32. 32.
    Ivanovskaya, T.A., Gor’kova, N.V., Karpova, G.V., and Pokrovskaya, E.V., Phyllosilicates (glauconite, illite, and chlorite) in terrigenous sediments of the Arymas Formation (Olenek High), Lithol. Miner. Resour., 2006, vol. 41, no. 6, pp. 547–569.CrossRefGoogle Scholar
  33. 33.
    Ivanovskaya, T.A., Zaitseva, T.S., Zviagina, B.B., and Sakharov, B.B., Crystal-chemical peculiarities of globular layer silicates of the glauconite–illite composition (Upper Proterozoic, Northern Siberia), Lithol. Miner. Resour., 2012, vol. 47, no. 6, pp. 491–512.CrossRefGoogle Scholar
  34. 34.
    Ivanovskaya, T.A., Zviagina, B.B., Sakharov, B.A., et al., Globular layer silicates of the glauconite–illite composition in Upper Proterozoic and Lower Cambrian rocks, Lithol. Miner. Resour., 2015, vol. 50, no. 6, pp. 452–477.CrossRefGoogle Scholar
  35. 35.
    Ivanovskaya, T.A., Zviagina, B.B., and Zaitseva, T.S., Secondary alterations of globular and platy phyllosilicates of the glauconite–illite series in the Precambrian and Vendian–Cambrian rocks, Lithol. Miner. Resour., 2017, vol. 52, no. 5, pp. 369–391.CrossRefGoogle Scholar
  36. 36.
    Kats, A.G. and Florova, Z.B., New data on the Upper Paleozoic stratigraphy of the southern slope of the Olenek Uplift, in Pozdnii dokembrii i rannii paleozoi Sibiri. Sibirskaya platforma i vneshnyaya zona Altae- Sayanskoi skladchatoi oblasti (Late Precambrian and Early Paleozoic of Siberia: Siberian Craton and External Zone of the Altai–Sayan Fold Belt), Novosibirsk: Inst. Geol. Geokhim. Sib. Otd. Akad. Nauk SSSR, 1986, pp. 65–84.Google Scholar
  37. 37.
    Kats, M.Ya., Shutov, V.D., Drits, V.A., et al., Factors responsible for abnormal age dates of glauconite, Dokl. Akad. Nauk SSSR, 1974, vol. 219, no. 1, pp. 208–211.Google Scholar
  38. 38.
    Kazakov, G.A., Investigation of glauconite suitability for the absolute age determination of sedimentary rocks, in Khimiya zemnoi kory. T. 2 (Chemistry of the Earth’s Crust, Vol. 2), Moscow: Nauka, 1964, pp. 539–552.Google Scholar
  39. 39.
    Khudoley, A.K., Rainbird, R.M., Stern, R.A., et al., Sedimentary evolution of the Riphean–Vendian basin of southeastern Siberia, Precambrian Res., 2001, vol. 111, pp. 129–163.CrossRefGoogle Scholar
  40. 40.
    Khudoley, A. Chamberlen, K., Erchova V., et al., Proterozoic supercontinental restorations: Constraints from provenance studies of Mesoproterozoic to Cambrian clastic rocks, eastern Siberian Craton, Precambrian Res., 2015, vol. 259, pp. 78–94.CrossRefGoogle Scholar
  41. 41.
    Kossovskaya, A.G. and Drits, V.A., Problems of crystallochemical and genetic classificaton of micaceous minerals in sedimentary rocks, in Epigenez i ego mineral’nye indikatory (Epigenesis and its Mineral Indicators), Moscow: Nauka, 1971.Google Scholar
  42. 42.
    Kuznetsov, A.B., Ovchinnikova, G.V., Gorokhov, I.M., et al., Age constraints on the Neoproterozoic Baikal Group from combined Sr isotopes and Pb–Pb dating of carbonates from the Baikal type section, southeastern Siberia, J. Asian Earth Sci., 2013, vol. 62, pp. 51–66.CrossRefGoogle Scholar
  43. 43.
    Kuznetsov, A.B., Semikhatov, M.A., and Gorokhov, I.M., The Sr isotope chemostratigraphy as a tool for solving stratigraphic problems of the Upper Proterozoic (Riphean and Vendian), Stratigr. Geol. Correl., 2014, vol. 22, no. 6, pp. 553–575.CrossRefGoogle Scholar
  44. 44.
    Larin, A.M., Ulkan–Dzhugdzhur ore-bearing anorthosite-rapakivi granite–peralkaline granite association, Siberian Craton: Age, tectonic setting, sources, and metallogeny, Geol. Ore Dep., 2014, vol. 56, no. 4, pp. 257–280.CrossRefGoogle Scholar
  45. 45.
    Lipson, J.F., K–Ar dating of sediments, Geochim. Cosmochim. Acta, 1956, vol. 10, nos. 1/2, p. 149.CrossRefGoogle Scholar
  46. 46.
    McDougall, I., Potassium-argon dating of glauconite from a greensand drilled at Site 270 in the Ross Sea, DSDP Leg 28, Initial Rep. Deep Sea Drilling Project, 1977, vol. 36, pp. 1071–1072.Google Scholar
  47. 47.
    McIntyre, G.A., Brooks, C., Compston, W., and Turek, A., The statistical assessment of Rb–Sr isochrons, J. Geophys. Res., 1966, vol. 71, no. 22, pp. 5459–5468.CrossRefGoogle Scholar
  48. 48.
    Morton, J.P. and Long, L.E., Rb–Sr ages of glauconite recrystallization: dating times of regional emergence above sea level, J. Sediment. Petrol., 1984, vol. 54, no. 2, pp. 495–506.Google Scholar
  49. 49.
    Nagovitsin, K.E., Rogov, V.I., Marusin, V.V., et al., Revised Neoproterozoic and Terreneuvian stratigraphy of the Lena–Anabar Basin and north-western slope of the Olenek Uplift, Siberian Platform, Precambrian Res., 2015, vol. 270, pp. 226–245.CrossRefGoogle Scholar
  50. 50.
    Nikolaeva, I.V., Mineraly gruppy glaukonita v osadochnykh formatsiyakh (Minerals of the Glauconite Group in Sedimentary Formations), Novosibirsk: Nauka, 1977 [in Russian].Google Scholar
  51. 51.
    Odin, G.S. and Dodson, M.H., Zero isotopic age of glauconites, in Numerical Dating in Stratigraphy, Chichester: Wiley, 1982, pp. 277–305.Google Scholar
  52. 52.
    Pfannes, H.D. and Gonser, U., Goldanskii–Karyagin effect versus preferred orientation (texture), Appl. Phys., 1973, vol. 1, no. 2, pp. 93–102.CrossRefGoogle Scholar
  53. 53.
    Polevaya, N.I. and Kazakov, G.A., New data on Late Precambrian geochronology, Dokl. Akad. Nauk SSSR, 1960, vol. 135, no. 1, pp. 162–165.Google Scholar
  54. 54.
    Rieder, M., Cavazzini, G., D’yakonov, Y., et al., Nomenclature of the micas, Can. Mineral., 1998, vol. 36, no. 3, pp. 905–912.Google Scholar
  55. 55.
    Rubinshtein, M.M., Argonovyi metod v primenenii k nekotorym voprosam regional’noi geologii (Application of Argon Method for Solving Some Problems of Regional Geology), Tbilisi: Metsniereba, 1967 [in Russian].Google Scholar
  56. 56.
    Rubinshtein, M.M., Chikvaidze, B.G., Khutsaidze, A.L., and Gel’man, O.Ya., Application of glauconite for the absolute dating of sedimentary rocks by the argon method, Izv. Akad. Nauk SSSR. Ser. Geol., 1959, no. 12, pp. 77–83.Google Scholar
  57. 57.
    Sainz-Diaz, C.I., Hernández-Laguna, A., and Dove, M.T., Theoretical modeling of cis-vacant and trans-vacant configurations in the octahedral sheet of illites and smectites, Phys. Chem. Miner., 2001, vol. 28, no. 3, pp. 322–331.CrossRefGoogle Scholar
  58. 58.
    Sainz-Diaz, C.I., Palin, E.J., Dove, M.T., and Hernández-Laguna, A., Monte Carlo simulation of ordering of Al, Fe, and Mg cations in the octahedral sheet of smectites and illites, Am. Mineral., 2003, vol. 88, no. 7, pp. 1033–1045.CrossRefGoogle Scholar
  59. 59.
    Sardarov, S.S., The improved isotope dilution method for measuring the radiogenic argon concentration in geological materials, in Tr. 5-i Sess. Kom. po opredeleniyu absolyutnogo vozrasta geologicheskikh formatsii (Proc. V Sess. Com. on Absolute Age Determination for Geological Formations), Moscow: Akad. Nauk SSSR, 1958, pp. 278–288.Google Scholar
  60. 60.
    Semikhatov, M.A., Gorokhov, I.M., Ivanovskaya, T.A., et al., The Rb–Sr and K–Ar age of Riphean-Cambrian globular phyllosilicates of the USSR: materials for geochronometer evaluation, Litol. Polezn. Iskop., 1987, vol. 22, no. 5, pp. 78–96.Google Scholar
  61. 61.
    Semikhatov, M.A., Gorokhov, I.M., Kutyavin, E.P., et al., Analysis of possibilities of sedimentary chronometers: evidence from the Riphean Totta Group in East Siberia, Litol. Polezn. Iskop., 1989, vol. 24, no. 6, pp. 3–18.Google Scholar
  62. 62.
    Semikhatov, M.A., Ovchinnikova, G.V., Gorokhov, I.M., et al., Isotope Age of the Middle–Upper Riphean Boundary: Pb–Pb Geochronology of the Lakhanda Group Carbonates, Eastern Siberia, Dokl. Earth Sci., 2000, vol. 372, no. 4, pp. 625–629.Google Scholar
  63. 63.
    Semikhatov, M.A., Ovchinnikova, G.V., Gorokhov, I.M., et al., Pb–Pb isochrone age and Sr-isotope characteristics of the Upper Yudomian carbonate deposits (Vendian of the Yudoma–Maya trough, Eastern Siberia), Dokl. Earth Sci., 2003, vol. 393, no. 1, pp. 83–87.Google Scholar
  64. 64.
    Semikhatov, M.A., Kuznetsov, A.B., Podkovyrov, V.N., et al., The Yudomian complex of stratotype area: C-isotope hemostratigraphic correlations and Yudomian–Vendian relation, Stratigr. Geol. Correl., 2004, vol. 12, no. 5, pp. 3–28.Google Scholar
  65. 65.
    Semikhatov, M.A., Kuznetsov, A.B., and Chumakov, N.M., Isotope age of boundaries between the general stratigraphic subdivisions of the Upper Proterozoic (Riphean and Vendian) in Russia: The evolution of opinions and the current estimate, Stratigr. Geol. Correl., 2015, vol. 23, no. 6, pp. 568–579.CrossRefGoogle Scholar
  66. 66.
    Shenfil’, V.Yu., Pozdnii dokembrii Sibirskoi platformy (Late Precambrian of the Siberian Platform), Novosibirsk: Nauka, 1991 [in Russian].Google Scholar
  67. 67.
    Shpunt, B.R., Shapovalova, I.G., Shamshina, E.A., et al., Proterozoi severo-vostochnoi okrainy Sibirskoi platformy (The Proterozoic at the Northeastern Margin of Siberian Platform), Novosibirsk: Nauka, 1979 [in Russian].Google Scholar
  68. 68.
    Shpunt, B.R., Shapovalova, I.G., and Shamshina, E.A., Pozdnii dokembrii severa Sibirskoi platformy (Late Precambrian in the North Siberian Platform), Novosibirsk: Nauka, 1982 [in Russian].Google Scholar
  69. 69.
    Shukolyukov, Yu.A., Gorokhov, I.M., and Levchenkov, O.A., Graficheskie metody izotopnoi geologii (Graphic Methods of Isotope Geology), Moscow: Nedra, 1974 [in Russian].Google Scholar
  70. 70.
    Steiger, R.H. and Jäger, E., Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology, Earth Planet. Sci. Lett., 1977, vol. 36, no. 3, pp. 359–362.CrossRefGoogle Scholar
  71. 71.
    Tsipursky, S.I. and Drits, V.A., The features of distribution of octahedral cations in the 2 : 1 layers of dioctahedral smectites based on electron diffraction data, Min. Zh., 1984, vol. 6, no. 1, pp. 3–16.Google Scholar
  72. 72.
    Wasserburg, G.J., Hayden, R.J., and Jensen, K.J., 40Ar/40K dating of igneous rocks and sediments, Geochim. Cosmochim. Acta, 1956, vol. 10, no. 3, pp. 153–165.CrossRefGoogle Scholar
  73. 73.
    Wingate, M.T.D., Pisarevsky, S.A., Gladkochub, D.P., et al., Geochronology and paleomagnetism of mafic igneous rocks in the Olenek Uplift, northern Siberia: implications for Mesoproterozoic supercontinents and paleogeography, Precambrian Res., 2009, vol. 170, no. 3, pp. 256–266.CrossRefGoogle Scholar
  74. 74.
    Zaitseva, T.S., Ivanovskaya, T.A., Gorokhov, I.M., et al., Mineralogy, Mössbauer characteristics, and K–Ar isotopic age of glauconite from the Lower Cambrian sediments, Western Lithuania, Lithol. Miner. Resour., 2005, vol. 40, no. 4, pp. 353–363.CrossRefGoogle Scholar
  75. 75.
    Zaitseva, T.S., Gorokhov, I.M., Ivanovskaya, T.A., et al., Mössbauer characteristics, mineralogy and isotopic age (Rb–Sr, K–Ar) of Upper Riphean glauconites from the Uk Formation, the Southern Urals, Stratigr. Geol. Correl., 2008, vol. 16, no. 3, pp. 227–247.CrossRefGoogle Scholar
  76. 76.
    Zaitseva, T.S., Gorokhov, I.M., and Melnikov, N.N., Mössbauer characteristics of Middle Riphean globular phyllosilicates (Eastern Siberia) and geological significance of their isotope dates, in Micro et Nano: Scientioe Mare Magnum. 14th Int. Clay Conf., Castellaneta Marina, Italy, 2009, vol. I, p. 202.Google Scholar
  77. 77.
    Zaitseva, T.S., Semikhatov, M.A., Gorokhov, I.M., et al., Isotopic geochronology and biostratigraphy of Riphean deposits of the Anabar Massif, North Siberia, Stratigr. Geol. Correl., 2016, vol. 24, no. 6, pp. 549–574.CrossRefGoogle Scholar
  78. 78.
    Zaitseva, T.S., Gorokhov, I.M., Semikhatov, M.A., et al., Rb–Sr and K–Ar age of globular phyllosilicates and biostratigraphy of the Riphean deposits of the Olenek Uplift (North Siberia), Stratigr. Geol. Correl., 2017, vol. 25, no. 6, pp. 581–606..Google Scholar
  79. 79.
    Zviagina, B.B., McCarty, D.K., Środoń, J., and Drits, V.A., Interpretation of infrared spectra of dioctahedral smectites in the region of OH-stretching vibrations, Clays Clay Miner., 2004, vol. 52, no. 4, pp. 399–410.Google Scholar
  80. 80.
    Zviagina, B.B., Drits, V.A., Sakharov, B.A., et al., Crystal-chemical regularities and identification criteria in Fe-bearing, K-dioctahedral 1M micas from X-ray diffraction and infrared spectroscopy data, Clays Clay Miner., 2017, vol. 55, no. 4, pp. 234–251.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. S. Zaitseva
    • 1
    Email author
  • I. M. Gorokhov
    • 1
  • M. A. Semikhatov
    • 2
  • A. B. Kuznetsov
    • 1
  • T. A. Ivanovskaya
    • 2
  • G. V. Konstantinova
    • 1
  • O. V. Dorzhieva
    • 2
  1. 1.Institute of Precambrian Geology and Geochronology, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Geological Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations