Stratigraphy and Geological Correlation

, Volume 26, Issue 6, pp 698–719 | Cite as

Hypostratotype of the Bashkirian Stage of the Carboniferous System (Askyn River, Bashkortostan): Lithology, Isotopes (δ13C, δ18O), and Carbonate Depositional Settings

  • V. N. KuleshovEmail author
  • K. M. Sedaeva
  • V. M. Gorozhanin
  • E. N. Gorozhanina


The isotopic composition and lithology of the hypostratotype of the Bashkirian Stage (Pennsylvanian) in the Askyn River section (Bashkortostan, western slope of the South Urals) are studied. The isotopic study (δ13C, δ18O) was conducted taking the carbonate lithology into account. The succession studied is composed of Upper Serpukhovian, Bashkirian, and Lower Moscovian carbonates of various lithological types, changeable throughout the section. The Serpukhovian carbonates are characterized by a relatively light carbon isotopic composition (negative values of δ13C), whereas the Bashkirian and Moscovian sediments have a heavy composition (mainly positive values of δ13C). The carbon isotope anomaly of the first order, fixed at the Mississippian–Pennsylvanian boundary and having a global distribution, is recorded in the studied hypostratotype section slightly higher than the uniformly accepted boundary level. This may indicate that the section contains “transitional beds” at the base of the Bashkirian. In the studied carbonates, a dependence (of the second order) of the isotopic composition of carbon and oxygen on the lithological type of rocks is sometimes recorded. The variation in the values of δ13C and δ18O in carbonates reflects changes in the conditions in which they were formed (temporary and local changes in paleotemperature, bioproductivity, desalination) and epigenetic changes.


isotopic composition carbon oxygen carbonates hypostratotype Bashkirian Stage chemostratigraphy Askyn 



This study was carried out within a framework of State Contract no. 0135-2016-0017 “Isotopic and Geochemical Indicators of the Age and Origin of Chemostratigraphic Markers and Stages in Lithogenesis in Sedimentary Late Precambrian and Phanerozoic Series,” State Contract no. 0252-2014-008 “Isotopic and Geochemical Reconstructions of Paleogeographical Settings of the South Urals at the Riphean–Vendian Boundary,” and State Contract no. 0252-2014-0002 “Geological Evolution of the Uralides of the South Urals at the Orogenic Stage.”


  1. 1.
    Alekseev, A.S., Typification of Phanerozoic mass extinction events, Moscow Univ. Geol. Bull., 2000, no. 5, pp. 6–14.Google Scholar
  2. 2.
    Alekseev, A.S., Revision of general scale of the Carboniferous system, Litosfera, 2003, no. 1, pp. 3–12.Google Scholar
  3. 3.
    Batt, L.S., Montanez, I.P., Pope, M.C., et al., Multi-carbonate component reconstruction of mid-Carboniferous (Chesterian) seawater δ13C, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2007, vol. 256, pp. 298–318.CrossRefGoogle Scholar
  4. 4.
    Berner, R.A., A model of atmospheric CO2 over Phanerozoic time, Am. J. Sci., 1991, vol. 291, pp. 339–376.CrossRefGoogle Scholar
  5. 5.
    Berner, R.A., 3GEOCARB II: A revised model of atmospheric CO2 over Phanerozoic time, Am. J. Sci., 1994, vol. 294, pp. 56–91.CrossRefGoogle Scholar
  6. 6.
    Biostratigraphy of deposits of the Bashkirian Stage of the Volgo-Ural Region, in Tr. VNIGNI. Vyp. 107 (Trans. All-Russ. Res. Geol. Oil Inst. Vol. 107), Moscow: Nauka, 1971.Google Scholar
  7. 7.
    Botz, R., Stofter, S.P., Faber, E., and Tietz, K., Isotope geochemistry of carbonate sediments from Lake Kivu (Eastern-Central Africa), Chem. Geol., 1988, vol. 69, pp. 299–308.CrossRefGoogle Scholar
  8. 8.
    Brand, U. and Bruckschen, P., Correlation of the Askyn River section, Southern Urals, Russia, with the Mid-Carboniferous Boundary GSSP, Bird Spring Formation, Arrow Canyon, Nevada, USA: implications for global paleoceanography, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2002, vol. 184, pp. 177–193.CrossRefGoogle Scholar
  9. 9.
    Brand, U., Jiang, G., Azmy, K., et al., Diagenetic evaluation of a Pennsylvanian carbonate succession (Bird Spring Formation, Arrow Canyon, Nevada, U.S.A.) – 1: Brachiopod and whole rock comparison, Chem. Geol., 2012, vols. 308–309, pp. 26–39.CrossRefGoogle Scholar
  10. 10.
    Brasier, M.D., Shields, G.S., Kuleshov, V.N., and Zhegallo, E.A., Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic–Cambrian of Southwest Mongolia, Geol. Mag., 1996, vol. 133, no. 2, pp. 445–485.CrossRefGoogle Scholar
  11. 11.
    Bruckschen, P., Oesmann, S., and Veizer, J., Isotope stratigraphy of the European Carboniferous. Proxy signals for ocean chemistry, climate and tectonic, Chem. Geol. Isotope Geosci. Sect., 1999, vol. 161, pp. 127–163.Google Scholar
  12. 12.
    Buggish, W., Wang, X., Alexeev, A.S., and Joachimski, M.M., Carboniferous–Permian carbon isotope stratigraphy of successions from China (Yangtze platform), USA (Kansas) and Russia (Moscow basin and Urals), Palaeogeogr., Palaeoclimatol., Palaeoecol., 2011, vol. 301, pp. 18–38.CrossRefGoogle Scholar
  13. 13.
    Chumakov, N.M., Glaciation of the Earth: history, stratigraphic significance and role in biosphere, in Tr. Geol. inst. Vyp. 611 (Trans. Geol. Inst. Russ. Acad. Sci. Vol. 611), Moscow: GEOS, 2015.Google Scholar
  14. 14.
    Egorov, A.I., Poyasa ugleobrazovaniya i neftegazonosnye zony zemnogo shara (Belts of Coal Formation and Petroleum Provinces of the World), Rostov-on-Don: Rostov. Gos. Univ., 1960 [in Russian].Google Scholar
  15. 15.
    Egorov, A.I., Global’naya evolyutsiya torfouglenakopleniya. Paleozoi (Global Evolution of Peat and Coal Accumulation: Paleozoic), Rostov-on-Don: Rostov. Gos. Univ., 1992 [in Russian].Google Scholar
  16. 16.
    Einor, O.L., Issledovaniya po stratigrafii karbona vostochnoi okrainy Uralo-Volzhskoi neftenosnoi oblasti (Gornaya Bashkiriya) (The Study of the Carboniferous Stratigraphy of the Eastern Margin of the Volga–Ural Petroleum Province (Mountainous Bashkiria)), Moscow: Gostoptekhizdat, 1958 [in Russian].Google Scholar
  17. 17.
    Einor, O.L., Problem of subdivision of the Bashkirian Stage in the stratotype area, Byull. MOIP. Otd. Geol., 1992, vol. 67, no. 2, pp. 67–79.Google Scholar
  18. 18.
    Friedman, J. and O’Neil, Y.R., Compilation of stable isotope fractionation factors of geochemical interest, US Geol. Surv. Prof. Pap., 1977, no. 440-KK, pp. 1–110.Google Scholar
  19. 19.
    Grossman, E.L., Zhang, C., and Yancey, T.E., Stable-isotope stratigraphy from brachiopods of Pennsylvanian shales in Texas, Bull. Geol. Soc. Am., 1991, vol. 103, pp. 953–965.CrossRefGoogle Scholar
  20. 20.
    Grossman, E.L., Mii, H.-S., and Yancey, T.E., Stable isotopes in Late Pennsylvanian brachiopods from the United States: implications for Carboniferous paleoceanography, Bull. Geol. Soc. Am., 1993, vol. 105, pp. 1284–1296.CrossRefGoogle Scholar
  21. 21.
    Grossman, E.L., Bruckschen, P., Mii, H.-S., et al., Carboniferous paleoclimate and global change: isotopic evidence from the Russian Platform, in Stratigrafiya i paleogeografiya karbona Evrazii (Carboniferous Stratigraphy and Paleogeography in Eurasia), Ekaterinburg: Inst. Geol. Geokhim. UrO RAN, 2002, pp. 61–71.Google Scholar
  22. 22.
    Grossman, E.L., Yancey, Th.E., Jones, Th.E., et al., Glaciation, aridification, and carbon sequestration in the Permo–Carboniferous: the isotopic record from low latitudes, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2008, vol. 268, pp. 222–233.CrossRefGoogle Scholar
  23. 23.
    Groves J.R. Calcareous foraminifers from the Bashkirian stratotype (Middle Carboniferous, South Urals) and their significance for intercontinental correlation and the evolution of the Fusulinidae, J. Paleontol., 1988, vol. 62, no. 3, pp. 368–399.CrossRefGoogle Scholar
  24. 24.
    Groves, J.R., Nemirovskaja, T.I., and Alekseev, A., Correlation of the type Bashkirian Stage (Middle Carboniferous, South Urals) with the Morrowan and Atokan series of the Midcontinental and western United States, J. Paleontol., 1999, vol. 73, no. 3, pp. 529–539.CrossRefGoogle Scholar
  25. 25.
    Haq, B.U. and Schutter, S.R., A chronology of Paleozoic sea-level changes, Science, 2008, vol. 322, pp. 64–68.CrossRefGoogle Scholar
  26. 26.
    Kabanov, P.B., Micritization of particles as a facies indicator of the shallow-marine carbonate rocks, Byull. MOIP. Otd. Geol., 2000, vol. 75, no. 4, pp. 39–47.Google Scholar
  27. 27.
    Katz, D.A., Buoniconti, M.R., Montaez, I.P., et al., Timing and local perturbations to the carbon pool in the lower Mississippian Madison Limestone, Montana and Wyoming, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2007, vol. 256, pp. 231–253.CrossRefGoogle Scholar
  28. 28.
    Kholodov, V.N., Kuleshov, V.N., and Nedumov, R.I., Catagenetic transformations and isotopic composition of carbonates in Tertiary deposits: evidence from Kuban Superdeep Boreholes (SGS-1 and SGS-2), Lithol. Miner. Resour., 1999, no. 1, pp. 46–57.Google Scholar
  29. 29.
    Kulagina, E.I., The Bashkirian–Moscovian boundary (Middle Carboniferous) in the Southern Urals in the light of the evolution of fusulinids, Byull. MOIP. Otd. Geol., 2008, vol. 83, no. 1, pp. 33–43.Google Scholar
  30. 30.
    Kulagina, E.I., Pazukhin, V.N., Kochetkova, N.M., et al., Stratotipicheskie i opornye razrezy bashkirskogo yarusa karbona Yuzhnogo Urala (Carboniferous Stratotype and Reference Sections of the Bashkirian Stage in the Southern Urals), Ufa: Gilem, 2001 [in Russian].Google Scholar
  31. 31.
    Kulagina, E.I., Pazukhin, V.N., Kochetkov, N.M., and Kochetova, N.N., Suggestions on improvement of stratigraphic scheme of the Bashkirian Stage, in Geol. Sb. no. 1 (Coll. Sci. Works in Geology. Vol. 1), Ufa: Inst. Geol. Ufim. Nauchn. Tsentr Ross. Akad. Nauk, 2000, pp. 64–65.Google Scholar
  32. 32.
    Kuleshov, V.N. and Sedaeva, K.M., Geochemistry of Isotopes (δ13S, δ18O) and Formation Conditions of Upper Kazanian Carbonate Rocks in the Volga–Vyatka Interfluve, Lithol. Miner. Resour., 2009, no. 5, pp. 495–510.Google Scholar
  33. 33.
    Kuleshov, V.N., Sedaeva, K.M., and Stroganova, Yu.Yu., Geochemistry of isotopes (δ13C, δ18O) and formation conditions of lower–middle Permian rocks in the Soyana River region (Arkhangel’sk district), Lithol. Miner. Resour., 2011, vol. 46, no. 3, pp. 265–281.CrossRefGoogle Scholar
  34. 34.
    Mii, H.-S., Grossman, E.L., and Yancey, T.E., Carboniferous isotope stratigraphies of North America: implications for Carboniferous paleoceanography and Missisipian glaciation, Bull. Geol. Soc. Am., 1999, vol. 111, no. 7, pp. 960–973.CrossRefGoogle Scholar
  35. 35.
    Mii, H.-S., Grossman, E.L., Yancey, T.E., et al., Isotopic records of brachiopod shells from the Russian Platform—evidence for the onset of mid-Carboniferous glaciation, Chem. Geol., 2001, vol. 175, pp. 133–147.CrossRefGoogle Scholar
  36. 36.
    Miller, D.J. and Eriksson, K.A., Linked sequence development and global climate change: the Upper Mississippian record in the Appalachian basin, Geology, 1999, vol. 27, no. 1, pp. 35–38.CrossRefGoogle Scholar
  37. 37.
    Misi, A., Kaufman, A.J., Veizer, J., et al., Chemostratigraphic correlation of Neoproterozoic successions in South America, Chem. Geol., 2007, vol. 237, pp. 143–167.CrossRefGoogle Scholar
  38. 38.
    Mizens, G.A, Kuleshov, V.N., Stepanova, T.I., and Kucheva, N.A., Reflection of the Famennian and Tournaisian global geological events in the isolated carbonate platform section on the east of the Urals, Russ. Geol. Geophys., 2015, vol. 56, no. 11, pp. 1945–1960.CrossRefGoogle Scholar
  39. 39.
    Mizens, G.A., Kuleshov, V.N., Sapurin, S.A., et al., Specific features of carbon and oxygen stable isotopes (δ13C and δ18O) geochemistry in the isolated carbonate platform section on the east of the Urals (the Famennian and Tournaisian Stages), Litosfera, 2016, no. 3, pp. 126–138.Google Scholar
  40. 40.
    Nemirovskaja, T.I. and Alekseev, A.S., Bashkirian conodonts of the Askyn section (Mountainous Bashkiria), Byull. MOIP. Otd. Geol., 1993, vol. 68, no. 1, pp. 65–86.Google Scholar
  41. 41.
    Pazukhin, V.N., Middle Carboniferous conodont assemblages in the Bashkir Cis-Urals, Mater. Vseross. Nauchn. Konf. “Verkhnii paleozoi Rossii: stratigrafiya i paleogeografiya”, 25–27 sentyabrya 2007 g., Kazan’ (Proc. All-Russ. Res. Conf. “Upper Paleozoic of Russia: Stratigraphy and Paleogeography,” September 25–27, 2007, Kazan), Kazan: Kazan. Gos. Univ., 2007, pp. 243–246.Google Scholar
  42. 42.
    Peryt, T.M. and Magaritz, M., Genesis of evaporate-associated platform dolomites: case study of the Main Dolomite (Zechstein, Upper Permian), Leba elevation, northern Poland, Sedimentology, 1990, vol. 37, no. 4, pp. 745–761.CrossRefGoogle Scholar
  43. 43.
    Pokrovsky, B.G. and Bujakaite, M.I., Geochemistry of C, O, and Sr isotopes in the Neoproterozoic carbonates from the southwestern Patom paleobasin, southern Middle Siberia, Lithol. Miner. Resour., 2015, vol. 50, no. 2, pp. 144–169.CrossRefGoogle Scholar
  44. 44.
    Pokrovsky, B.G. and Bujakaite, M.I., Isotopic compositions of C, O, Sr, and S and problem of ages of the Katera and Uakit Groups, western Transbaikal region, Lithol. Miner. Resour., 2016, vol. 51, no. 4, pp. 262–282.CrossRefGoogle Scholar
  45. 45.
    Popp, B.N., Anderson, T.F., and Sandberg, P.A., Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones, Bull. Geol. Soc. Am., 1986, vol. 97, no. 10, pp. 1262–1269.CrossRefGoogle Scholar
  46. 46.
    Poulsen, C.J., Tabor, C., and White, J.D., Long-term climate forcing by atmospheric oxygen concentrations, Science, 2015, vol. 348, no. 6240, pp. 1238–1241.CrossRefGoogle Scholar
  47. 47.
    Proust, J.N., Chuvashov, B.I., Vennin, E., and Boisseau, T., Carbonate platform drowning in a foreland setting: the mid-Carboniferous platform in western Urals (Russia), J. Sedimentary Res., 1998, vol. 68, no. 6, pp. 1175–1188.CrossRefGoogle Scholar
  48. 48.
    Puchkov, V.N., Structural relationships between the Precambrian and Paleozoic at the periphery of the Bashkirian anticlinorium, Dokl. Ross. Akad. Nauk, 1997, vol. 352, no. 5, pp. 665–671.Google Scholar
  49. 49.
    Puchkov, V.N., Paleogeodinamika yuzhnogo i srednego Urala (Paleogeodynamics of the Southern and Middle Urals), Ufa: Dauriya, 2000 [in Russian].Google Scholar
  50. 50.
    Putevoditel’ ekskursii po razrezam karbona Yuzhnogo Urala (Bashkiriya) (Guidebook of the Geological Excursion for the Carboniferous Sections of the Southern Urals (Bashkiriya)), Moscow: Nauka, 1975 [in Russian].Google Scholar
  51. 51.
    Putevoditel’ geologicheskoi ekskursii po razrezam paleozoya i verkhnego dokembriya zapadnogo sklona Yuzhnogo Urala i Priural’ya (Guidebook of the Geological Excursion for the Paleozoic and Upper Precambrian Sections on the Western Slope of the Southern Urals), Ufa: Ufim. Nauchn. Tsentr RAN, 1995 [in Russian]. Google Scholar
  52. 52.
    Putevoditel’ geologicheskikh ekskursii po karbonu Urala. Ch. 1. Yuzhnoural’skaya ekskursiya (Guidebook of the Geological Excursion for the Carboniferous of the Urals. Part 1. Southern Urals Excursion), Ekaterinburg: Inst. Geol. Geokhim. Ural. Otd. RAN, 2002 [in Russian].Google Scholar
  53. 53.
    Rowley, D.B., Raymond, A., Parrish, J.T., et al., Carboniferous paleogeographic, phytogeographic, and paleoclimatic reconstructions, Int. J. Coal Geol., 1985, vol. 5, pp. 7–42.CrossRefGoogle Scholar
  54. 54.
    Saltzman, M.R., Carbon and oxygen isotope stratigraphy of the Lower Mississippian (Kinderhookian–early Osagaean), western United States: implications for seawater chemistry and glaciation, Bull. Geol. Soc. Am., 2002, vol. 114, pp. 96–108.CrossRefGoogle Scholar
  55. 55.
    Saltzman, M.R., The Late Paleozoic ice age: oceanic gateway or pCO2? Geology, 2003, vol. 31, pp. 151–154.CrossRefGoogle Scholar
  56. 56.
    Saltzman, M.R., Phosphorus, nitrogen, and the redox evolution of the Paleozoic oceans, Geology, 2005, vol. 33, pp. 573–576.CrossRefGoogle Scholar
  57. 57.
    Scholle, P.A., Albrechtsen, T., and Tirsgaard, H., Formation and diagenesis of bedding cycles in uppermost Cretaceous chalks of the Dan Field, Danish North Sea, Sedimentology, 1998, vol. 45, no. 2, pp. 223–243.CrossRefGoogle Scholar
  58. 58.
    Sedaeva, K.M., Ryabinkina, N.N., Kuleshov, V.N., and Valyaeva, O.V., Reflection of the Khangenberg global geological even at the Devonian–Carboniferous boundary in sections on the western slope of the Subpolar (Kozhim River) and South (Sikaza River) Urals, Litosfera, 2010, no. 6, pp. 25–37.Google Scholar
  59. 59.
    Semikhatov, M.A., Kuznetsov, A.B., Podkovyrov, V.N., et al., The Yudomian complex of stratotype area: C-isotope hemostratigraphic correlations and Yudomian–Vendian relation, Stratigr. Geol. Correl., 2004, vol. 12, no. 5, pp. 3–28.Google Scholar
  60. 60.
    Semikhatova, S.V., Brachiopods in the Bashkirian beds of the USSR, in Tr. PIN. T. XII. Vyp. 4 (Trans. Paleontol. Inst. Vol. XII. Iss. 4), Moskva-Leningrad: Izd. Akad. Nauk SSSR, 1941.Google Scholar
  61. 61.
    Semikhatova, S.V., Einor, O.L., Kireeva, G.D., et al., Bashkirian Stage in the planetary scale of the Carboniferous period, Tr. VIII Mezhd. Kongr. po stratigrafii i geologii karbona (Proc. VIII Int. Congr. on Carboniferous Stratigraphy and Geology), Moscow: Nauka, 1978, vol. 1, pp. 102–111.Google Scholar
  62. 62.
    Sinitsyna, Z.A., The Middle Carbonaceous reference section along the Askyn River, in Stratigrafiya i paleontologiya (Stratigraphy and Paleontology), Ufa: Bashkir. Fil. Akad. Nauk SSSR, 1974, vol. 24, pp. 64–69.Google Scholar
  63. 63.
    Sinitsyna, Z.A. and Sinitsyn, I.I., Geologicheskaya karta SSSR masshtaba 1 : 200000. List N-40-XV. Ob"yasnitel’naya zapiska (The 1 : 200000 Geological Map of the USSR. Sheet N-40-XV. Explanatory Note), Moscow: Gosgeoltekhizdat, 1962 [in Russian].Google Scholar
  64. 64.
    Sinitsyna, Z.A. and Sinitsyn, I.I., Biostratigrafiya bashkirskogo yarusa v stratotipe (Biostratigraphy of the Bashkirian Stage at its Stratotype), Ufa: Bashkir. Fil. Akad. Nauk SSSR, 1987 [in Russian].Google Scholar
  65. 65.
    Smith, L.B., Jr. and Read, J.F., Rapid onset of late Paleozoic glaciation on Gondwana: evidence from Upper Mississippian strata of the Midcontinent, United States, Geology, 2000, vol. 29, pp. 279–282.CrossRefGoogle Scholar
  66. 66.
    Stratigraficheskie skhemy Urala (dokembrii, paleozoi) (Stratigraphic Schemes of the Urals (Precambrian, Paleozoic)), Ekaterinburg: Mezhved. Stratigr. Kom. Rossii, 1993 [in Russian].Google Scholar
  67. 67.
    Sungatullin, Z.Kh., Kuleshov, V.N., and Kadyrov, R.I., Isotope composition (δ13C and δ18O) of dolomites from the Permian evaporite strata of the eastern Russian Plate (using the Syukeevskii gypsum deposits as an example), Lithol. Miner. Resour., 2014, vol. 49, no. 5, pp. 406–415.CrossRefGoogle Scholar
  68. 68.
    Teodorovich, G.I., Bashkirian Stage within the Ural–Volga region, Byull. MOIP. Otd. Geol., 1952, vol. XXVII, no. 1, pp. 18–27.Google Scholar
  69. 69.
    Teodorovich, G.I., Subdivision of reference sections of the Bashkirian Stage in the Mountainous Bashkiria into faunistic horizons, Byull. MOIP. Otd. Geol., 1957, vol. XXXII, no. 3, pp. 65–80.Google Scholar
  70. 70.
    Teodorovich, G.I., The stratotype section of the Bashkirian Stage and its stratigraphic subdivisions, in Biostratigrafiya neftenosnykh oblastei SSSR (Biostratigraphy of Petroleum Basins of the USSR), Moscow: Nauka, 1964, pp. 13–58.Google Scholar
  71. 71.
    The Geologic Time Scale 2012, Gradstein, F.M., Ogg, J.G., Schmitz, M.D., and Ogg, G.M., Eds., Amsterdam–Tokio: Elsevier, 2012.Google Scholar
  72. 72.
    Veevers, J.J. and Powell, C.M., Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive–regressive depositional sequences in Euramerica, Bull. Geol. Soc. Am., 1987, vol. 98, pp. 475–487.CrossRefGoogle Scholar
  73. 73.
    Veimarn, A.B., Naidin, D.P., Kopaevich, L.F., et al., Metody analiza global’nykh katastroficheskikh sobytii pri detal’nykh stratigraficheskikh issledovaniyakh: metodicheskie rekomendatsii (Methods of Analysis of Global Catastrophic Events at the Detailed Stratigraphic Studies: Methodical Recommendations), Moscow: Mosk. Gos. Univ., 1998 [in Russian].Google Scholar
  74. 74.
    Veizer, J., Ala, D., Azmy, K., et al., 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater, in Earth System Evolution, Geochemical Perspective, Veizer, J., Ed., Chem. Geol., 1999, vol. 161, nos. 1–3, pp. 59–88.Google Scholar
  75. 75.
    Wright, V.P. and Vanstone, S.D., Onset of the late Paleozoic glacio-eustasy and the evolving climates of low latitude areas: a synthesis of current understanding, J. Geol. Soc. London, 2001, vol. 158, pp. 579–582.CrossRefGoogle Scholar
  76. 76.
    Wynn, T.C. and Read, J.F., Carbon-oxygen isotope signal of Mississippian slope carbonates, Appalachians, USA: a complex response to climate-driven fourth-order glacio-eustasy, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2007, vol. 256, pp. 254–272.CrossRefGoogle Scholar
  77. 77.
    Zhou, C. and Xiao, S., Ediacaran δ13C chemostratigraphy of South China, Chem. Geol., 2007, vol. 89, pp. 89–108.CrossRefGoogle Scholar
  78. 78.
    Zhuravlev, A.Yu. and Wood, R., Controls on carbonate skeletal mineralogy: global CO2 evolution and mass extinctions, Geology, 2009, vol. 37, no. 12, pp. 113–1126.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. N. Kuleshov
    • 1
    Email author
  • K. M. Sedaeva
    • 2
  • V. M. Gorozhanin
    • 3
    • 4
  • E. N. Gorozhanina
    • 3
  1. 1.Geological Institute, Russian Academy of SciencesMoscowRussia
  2. 2.Faculty of Geology, Moscow State UniversityMoscowRussia
  3. 3.Institute of Geology, Ufa Scientific CenterUfaRussia
  4. 4.Bashkir State UniversityUfaRussia

Personalised recommendations