Stratigraphy and Geological Correlation

, Volume 26, Issue 6, pp 634–658 | Cite as

The Ludfordian Lau Event (Upper Silurian) in the Northeastern Regions of European Russia

  • A. I. AntoshkinaEmail author


The Ludfordian deposits of the boundary interval of the Gerd’yu and Greben’ superhorizons in the north of the western slope of the Urals and the Pre-Urals Foredeep corresponding to the mid-Ludfordian interval of the Lau Event are studied. The results were obtained using lithological, facies, paleontological, geochemical, spectroscopic, electron-microscopic, and isotopic chemostratigraphic methods. The Lau Event in the examined section is recognized by a distinct change in facies, by a change in zonal species in assemblages of brachiopods, vertebrates, and conodonts, and by climatic changes. The Subpolar Urals section includes a member of clayey-carbonate rocks with interbeds of carbonaceous shales, argillites, and clayey dolomites, reflecting a prominent Greben’ transgression that followed the variously pronounced erosion of a carbonate plate at the end of the Gerd’yu time and differentiation of back-reef relief of this platform. A positive excursion of the isotopic chemostratigraphic curves within the Lau Event interval is most pronounced in the sections of the Chernyshev and Chernov swells, where rocks are less strongly altered by secondary processes and δ13Ccarb is 4.6 and 6.2–7.4‰, respectively. A decline in the Homerian–early Ludfordian reefs right until the late Lochkovian was an important result of this event as it marked a cessation of the Late Ordovician–Silurian marginal shelf reef formation in the Urals.


Ludfordian Gerd’yu and Greben’ superhorizons depositional settings facies fossils δ13Ccarb and δ18Ocarb chemostratigraphy 



I am grateful to the reviewers A.S. Alekseev, N.V. Sennikov, and T.Yu. Tolmacheva for useful recommendations during the preparation of the paper for publication.

The study was carried out within a framework of State Program no. AAAA-A17-117121270034-3 and was partly funded by the Program of Fundamental Study of the Ural Branch of the Russian Academy of Sciences, project no. 18-5-5-31.

Reviewers A.S. Alekseev, N.V. Sennikov, and T.Yu. Tolmacheva


  1. 1.
    Abushik, A., Silurian–earliest Devonian ostracode biostratigraphy of the Timan–northern Ural region, Proc. Estonian Acad. Sci. Geol., 2000, vol. 49, no. 2, pp. 112–125.Google Scholar
  2. 2.
    Antoshkina, A.I., Rify v paleozoe Pechorskogo Urala (Reefs in the Paleozoic of the Pechora Urals), St. Petersburg: Nauka, 1994 [in Russian].Google Scholar
  3. 3.
    Antoshkina, A.I., The Silurian of the Timan–northern Ural region, Proc. Estonian Acad. Sci. Geol., 2000, vol. 49, no. 2, pp. 69–84.Google Scholar
  4. 4.
    Antoshkina, A.I., Spatial and temporal relationships in the structure of Lower Paleozoic Kaleydov Formation (Northern Urals), in Problemy geologii i mineralogii (Problems of Geology and Mineralogy), Pystin, A.M., Ed., Syktyvkar: Geoprint, 2006, pp. 351–364.Google Scholar
  5. 5.
    Antoshkina, A.I., Silurian sea-level and biotic events in the Timan–northern Ural region: sedimentological aspects, Acta Palaeontol. Sinica, 2007, vol. 46, pp. 23–27.Google Scholar
  6. 6.
    Antoshkina, A.I., Early Paleozoic reef formation in the North Urals and his relationship with the geo-biosphere changes, in Rifogennye formatsii i rify v evolyutsii biosfery. Seriya “Geo-biologicheskie sistemy v proshlom” (Reef-Building Formations and Reefs in the Evolution of the Biosphere. Series “Geobiological Systems in the Past”), Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2011, pp. 116–141.Google Scholar
  7. 7.
    Antoshkina, A., Ooid-stromatolite association as a precursor of bioevents (Silurian, Timan–northern Ural Region), Palaeoworld, 2015, vol. 24, pp. 198–206.CrossRefGoogle Scholar
  8. 8.
    Antoshkina, A.I. and Beznosova, T.M., Lithological–facies features of the Silurian Greben horizon in the Northern Cis-Urals, in Geologiya i poleznye iskopaemye severo-vostoka evropeiskoi chasti SSSR. Ezhegodnik-1975 (Geology and Mineral Resources of the north-east of the European USSR. Yearbook-1975), Syktyvkar: Komi Fil. Akad. Nauk SSSR, 1976, pp. 14–19.Google Scholar
  9. 9.
    Antoshkina, A.I., Beznosova, T.M., Männik, P., et al., Correlation of the Silurian sequence of the Timan–northern Ural region with the Baltic sections and with the International Standard, Ichthyolith Iss. (Syktyvkar) Spec. Publ., 2000, no. 6, pp. 17–21.Google Scholar
  10. 10.
    Antoshkina, A.I., Valyaeva, O.V., Isaenko, S.I., et al., Upper Ludfordian black shales as indicators of euxinic conditions, Subpolar Urals, Geochem Int., 2012, vol. 50, no. 12, pp. 1038–1043.CrossRefGoogle Scholar
  11. 11.
    Barrick, J.E., Kleffner, M.A., Gibson, M.A., et al., The mid-Ludfordian Lau Event and Carbon Isotope Excursion (Ludlow, Silurian) in southern Laurentia – Preliminary Results, Boll. Soc. Paleontol. Ital., 2010, vol. 49, no. 1, pp. 13–33.Google Scholar
  12. 12.
    Beznosova, T.M., Silurian brachiopods in the Timan–northern Ural region: zonation and palaeoecology, Proc. Estonian Acad. Sci. Geol., 2000, vol. 49, no. 2, pp. 126–146.Google Scholar
  13. 13.
    Beznosova, T.M., Soobshchestva brakhiopod i biostratigrafiya verkhnego ordovika, silura i nizhnego devona severo-vostochnoi okrainy paleokontinenta Baltiya (Brachiopod Assemblages and Biostratigraphy of the Upper Ordovician, Silurian, and Lower Devonian of the Northeastern Margin of the Baltic Paleocontinent), Ekaterinburg: Ural. Otd. RAN, 2008 [in Russian].Google Scholar
  14. 14.
    Bickert, T., Pätzold, J., Samtleben, C., et al., Paleoenvironmental changes in the Silurian indicated by stable isotopes in brachiopod shells from Gotland, Sweden, Geochim. Cosmochim. Acta, 1997, vol. 61, no. 13, pp. 2717–2730.CrossRefGoogle Scholar
  15. 15.
    Boucot, A.J., Evolution and Extinction Rate Controls, Amsterdam: Elsevier, 1975.Google Scholar
  16. 16.
    Calner, M., A Late Silurian extinction event and anachronistic period, Geology, 2005, vol. 33, pp. 305–308.CrossRefGoogle Scholar
  17. 17.
    Calner, M., Silurian global events – at the tipping point of climate change, in Mass Extinctions, Ashraf M.T. Elewa, Ed., Heidelberg: Springer-Verlag, 2008, pp. 21–58.Google Scholar
  18. 18.
    Calner, M., Jeppsson, L., and Munnecke, A., The Silurian of Gotland – Part I: Review of the stratigraphic framework, event stratigraphy, and stable carbon and oxygen isotope development, in Early Palaeozoic Palaeogeography and Palaeoclimate (IGCP 503), Munnecke, A, Servais, T, Schulbert, C., Eds., Erlanger Geol. Abh., Sonderb. 5, pp. 113–131Google Scholar
  19. 19.
    Caputo M.V. Ordovician–Silurian glaciations and global sea-level changes, in Silurian Cycles: Linkages of Dynamic Stratigraphy with Atmospheric, Oceanic, and Tectonic Changes, Landing E. and Johnson, M., Eds., New York State Museum Bull., 1998, vol. 491, pp. 15–25.Google Scholar
  20. 20.
    Cherkesova, S.V., Greben horizon in the Silurian of Vaigach, in Stratigrafiya i fauna siluriiskikh otlozhenii Vaigacha (Stratigraphy and Fauna of the Silurian deposits of Vaigach), Leningrad: Nauchno-Issled. Inst. Geol. Arktiki, 1970, pp. 5–23.Google Scholar
  21. 21.
    Cocks, L.R.M. and Torsvik, T.H., Baltica from the late Precambrian to mid-Palaeozoic times: The gain and loss of a terrane’s identity, Earth-Sci. Rev., 2005, vol. 72, pp. 39–66.CrossRefGoogle Scholar
  22. 22.
    Cooper, R.A., Sadler, P.M., Munnecke, A., et al., Graptoid evolutionary rates track Ordovician–Silurian global climate change, Geol. Mag., 2014, vol. 151, no. 2, pp. 349–364.CrossRefGoogle Scholar
  23. 23.
    Cramer, B.D. and Saltzman, M.R., Sequestration of 12C in the deep ocean during the early Wenlock (Silurian) positive carbon isotope excursion, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2005, vol. 219, pp. 333–349.CrossRefGoogle Scholar
  24. 24.
    Cramer, B.D., Munnecke, A., Schofield, D.I., et al., A revised 87Sr/86Sr curve for the Silurian: implications for global ocean chemistry and the Silurian timescale, J. Geol., 2011, vol. 119, pp. 335–349.CrossRefGoogle Scholar
  25. 25.
    Eriksson, M.J. and Calner, M., A sequence stratigraphical model for the late Ludfordian (Silurian) of Gotland, Sweden: implications for timing between changes in sea level, palaeoecology, and the global carbon cycle, Facies, 2008, vol. 54, pp. 253–276.Google Scholar
  26. 26.
    Evzerov, V.Ya., Experience of applying geochemical methods for determining paleosalinity and paleotemperatures to the study of Quaternary deposits of the Kola Peninsula, Vestn. MGTU, 2014, vol. 17, no. 2, pp. 279–285.Google Scholar
  27. 27.
    Farkaš, J., Frýda, J., and Holmden, C., Calcium isotope constraints on the marine carbon cycle and CaCO3 deposition during the late Silurian (Ludfordian) positive δ13C excursion, Earth Planet. Sci. Lett., 2016, vol. 451, pp. 31–40.CrossRefGoogle Scholar
  28. 28.
    Flügel, E., Microfacies of Carbonate Rocks: Analysis, Interpretation and Application, Berlin, Heidelberg: Springer-Verlag, 2004.CrossRefGoogle Scholar
  29. 29.
    Frýda, J. and Manda, Š., A long-lasting steady period of isotopically heavy carbon in the late Silurian ocean: evolution of the δ13C record and its significance for an integrated δ13C, graptolite and conodont stratigraphy, Bull. Geosci., 2013, vol. 88, no. 2, pp. 463–482.CrossRefGoogle Scholar
  30. 30.
    Gault, A.G., Ibrahim, A., Langley, S., et al., Microbial and geochemical features suggest iron redox cycling within bacteriogenic iron oxide-rich sediments, Chem. Geol., 2010, vol. 281, pp. 41–51.CrossRefGoogle Scholar
  31. 31.
    Gavrilov, Yu.O. and Kopaevich, L.F., Geochemical, biochemical, and biotic consequences of eustatic fluctuations, Stratigr. Geol. Correl., 1996, vol. 4, no. 4, pp. 3–14.Google Scholar
  32. 32.
    Gocke, M., Lehnert, O., and Frýda, J., Facies development across the Late Silurian Lau Event based on temperate carbonates of the Prague Basin (Czech Republic), Facies, 2013, vol. 59, pp. 611–630.CrossRefGoogle Scholar
  33. 33.
    Gorbov, A.Ya., Geokhimiya bora (Geochemistry of Boron), Leningrad: Nedra, 1976 [in Russian].Google Scholar
  34. 34.
    Halas, S. and Chlebowski, R., Unique siderite occurrence in Baltic Sea: a clue to siderite–water oxygen isotope fractionation at low temperatures, Geol. Quart., 2004, vol. 48, no. 4, pp. 317–322.Google Scholar
  35. 35.
    Hallam, A. and Wignall, P.B., Mass extinctions and sea-level changes, Earth-Sci. Rev., 1999, vol. 48, pp. 217–250.CrossRefGoogle Scholar
  36. 36.
    Jarochowska, E. and Kozlowski, W., Facies development and sequence stratigraphy of the Ludfordian (Upper Silurian) deposits in the Zbruch River Valley, Podolia, western Ukraine: local facies overprint on the δ13Ccarb record of a global stable carbon isotope excursion, Facies, 2014, vol. 60, pp. 347–369.CrossRefGoogle Scholar
  37. 37.
    Jeppsson, L., Lithological and conodont distributional evidence for episodes of anomalous oceanic conditions during the Silurian, in Palaeobiology of Conodonts, Aldridge, R.J., Ed., Chichester, West Sussex: Ellis Horwood, 1987, pp. 129–145.Google Scholar
  38. 38.
    Jeppsson, L., An oceanic model for lithological and faunal changes tested on the Silurian record, J. Geol. Soc. London, 1990, vol. 147, pp. 663–674.CrossRefGoogle Scholar
  39. 39.
    Jeppsson, L., Silurian oceanic events: summary of general characteristics, in Silurian Cycles: Linkages of Dynamic Stratigraphy with Atmospheric, Oceanic, and Tectonic Changes (James Hall Centennial Volume), Landing, E. and Johnson, M.E., Eds., New York State Museum Bull., 1998, vol. 491, pp. 239–257.Google Scholar
  40. 40.
    Jeppsson, L., Conodont-based revisions of the Late Ludfordian on Gotland, Sweden, GFF, 2005, vol. 127, pp. 273–282.CrossRefGoogle Scholar
  41. 41.
    Jeppsson, L., Talent, J.A., Mawson, R., et al., High-resolution Late Silurian correlations between Gotland, Sweden, and the Broken River region, NE Australia: lithologies, conodonts, and isotopes, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2007, vol. 245, pp. 115–137.CrossRefGoogle Scholar
  42. 42.
    Jeppsson, L., Talent, J.A., Mawson, R., et al., Late Ludfordian correlation and the Lau Event, in Earth and Life, International Year of Planet Earth, Talent, J.A., Ed., Heidelberg: Springer Verlag, 2012, pp. 653–675.Google Scholar
  43. 43.
    Johnson, M.E., Relationship of Silurian sea-level fluctuations to oceanic episodes and events, GFF, 2006, vol. 128, no. 2, pp. 115–121.CrossRefGoogle Scholar
  44. 44.
    Kaljo, D., Boucot, A.J., Corfield, R.M., et al., Silurian bio-events, in Global Events and Event Stratigraphy in the Phanerozoic, Walliser, O.H., Ed., Berlin, Heidelberg, New York: Springer, 1996, pp. 173–224.Google Scholar
  45. 45.
    Kaljo, D., Grytsenko, V., Martma, T., et al., Three global carbon isotope shifts in the Silurian of Podolia (Ukraine): stratigraphic implications, Estonian J. Earth Sci., 2007, vol. 56, pp. 205–220.CrossRefGoogle Scholar
  46. 46.
    Hunt, J.M., Petroleum Geochemistry and Geology, San Francisco: W.H. Freeman and Company, 1979.Google Scholar
  47. 47.
    Kotelnikov, D.D. and Konyukhov, A.I., Glinistye mineraly osadochnykh porod (Clay Minerals of Sedimentary Rocks), Moscow: Nedra, 1986 [in Russian].Google Scholar
  48. 48.
    Kozłowski, W. and Munnecke, A., Stable carbon isotope development and sea-level changes during the Late Ludlow (Silurian) of the Łysogóry region (Rzepin section, Holy Cross Mountains, Poland), Facies, 2010, vol. 56, pp. 615–633.CrossRefGoogle Scholar
  49. 49.
    Kozłowski, W. and Sobień, K., Mid-Ludfordian coeval carbon isotope, natural gamma ray and magnetic susceptibility excursions in the Mielnik IG-1 borehole (Eastern Poland) – dustiness as a possible link between global climate and the Silurian carbon isotope record, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2012, vol. 339, pp. 74–97.CrossRefGoogle Scholar
  50. 50.
    Lehnert, O., Eriksson, M.J., Calner, M., et al., Concurrent sedimentary and isotopic indications for global climatic cooling in the Late Silurian, Acta Palaeontol. Sinica, 2007a, vol. 46, pp. 249–255.Google Scholar
  51. 51.
    Lehnert, O., Frýda, J., Buggisch, W., et al., δ13C record across the Ludlow Lau Event: new data from mid palaeolatitudes of northern peri-Gondwana (Prague basin, Czech Republic), Palaeogeogr., Palaeoclimatol., Palaeoecol., 2007b, vol. 245, pp. 227–244.CrossRefGoogle Scholar
  52. 52.
    Loydell, D.K. and Frýda, J., At what stratigraphical level is the mid Ludfordian (Ludlow, Silurian) positive carbon isotope excursion in the type Ludlow area, Shropshire, England, Bull. Geosci., 2011, vol. 86, no. 2, pp. 197–208.CrossRefGoogle Scholar
  53. 53.
    Manda, Š., Štorch, P., Slavík, L., et al., The graptolite, conodont and sedimentary record through the late Ludlow Kozlowskii Event (Silurian) in the shale-dominated succession of Bogemia, Geol. Mag., 2012, vol. 149, no. 3, pp. 507–531.CrossRefGoogle Scholar
  54. 54.
    Männik, P. and Martma, T., Llandovery–Wenlock boundary in the Subpolar Urals, Ichthyolith Iss. (Syktyvkar). Spec. Publ., 2000, no. 6, pp. 64–67.Google Scholar
  55. 55.
    Männik, P., Antoshkina, A.I., and Beznosova, T.M., The Llandovery–Wenlock boundary in the Russian Arctic, Proc. Estonian Acad. Sci. Geol., 2000, vol. 49, no. 2, pp. 104–111.Google Scholar
  56. 56.
    Märss, T., Andreolepis (Actinopterygii) in the Upper Silurian of northeastern Eurasia, Proc. Estonian Acad. Sci. Geol., 2001, vol. 50, no. 3, pp. 174–189.Google Scholar
  57. 57.
    Maslov, A.V., Gareev, E.Z., Krupenin, M.T., et al., Tonkaya alyumosilikoklastika v verkhnedokembriiskom razreze Bashkirskogo megantiklinoriya (k rekonstruktsii uslovii formirovaniya) (Fine Alumosilicoclastic Material in the Upper Precambrian Sequence of the Bashkirian Meganticlinorium), Ekaterinburg: Inst. Geol. Geokhim. Ural. Otd. RAN, 1999 [in Russian].Google Scholar
  58. 58.
    Maslov, A.V., Krupenin, M.T., Gareev, E.Z., et al., Lithological, lithochemical and geochemical indicators of paleoclimate: Evidence from Riphean of the Southern Urals, Lithol. Miner. Resour., 2003, vol. 38, no. 5, pp. 427–446.CrossRefGoogle Scholar
  59. 59.
    Melnikov, S.V., Konodonty ordovika i silura Timano-Severoural’skogo regiona (Ordovician and Silurian Conodonts of the Timan–Northern Urals Region), St. Petersburg: Vseross. Nauchno-Issled. Geol. Inst., 1999 [in Russian].Google Scholar
  60. 60.
    Modzalevskaya, T.L., Middle Ludfordian event in evolution of Silurian brachiopods of the European province, Stratigr. Geol. Correl., 1997, vol. 5, no. 3, pp. 3–9.Google Scholar
  61. 61.
    Modzalevskaya, T.L. and Märss, T., On the age of the Greben horizon bottom in the Urals, Izv. Akad. Nauk Estonii. Geol., 1991, vol. 40, no. 3, pp. 100–103.Google Scholar
  62. 62.
    Modzalevskaya, T.L. and Wenzel, B., Biostratigraphy and geochemistry of Upper Silurian brachiopods from the Timan–Pechora region (Russia), Acta Geol. Polon., 1999, vol. 40, no. 2, pp. 145–157.Google Scholar
  63. 63.
    Munnecke, A., Samtleben, C., and Bickert, T., The Ireviken Event in the Lower Silurian of Gotland, Sweden – relation to similar Paleozoic and Proterozoic events, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2003, vol. 195, nos. 1–2, pp. 99–124.CrossRefGoogle Scholar
  64. 64.
    Munnecke, A., Calner, M., Harper, D.A.T., et al., Ordovician and Silurian sea-water chemistry, sea level, and climate: a synopsis, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2010, vol. 296, pp. 389–413.CrossRefGoogle Scholar
  65. 65.
    Opornye razrezy pogranichnykh otlozhenii silura i devona Pripolyarnogo Urala (Reference Sections of the Silurian/Devonian Boundary Deposits of Subpolar Urals), Tsyganko, V.S. and Chermnykh, V.A., Eds., Syktyvkar: Komi Fil. Akad Nauk SSSR, 183 [in Russian].Google Scholar
  66. 66.
    Paleozoiskoe osadkonakoplenie na vneshnei zone shel’fa passivnoi okrainy severo-vostoka Evropeiskoi platformy (Paleozoic Sedimentation in the Outer Shelf Zone of the Northeastern Passive Margin of the European Platform), Antoshkina, A.I. and Saldin, V.A., Eds., Syktyvkar: Geoprint, 2011 [in Russian].Google Scholar
  67. 67.
    Patrunov, D.K., Greben horizon of lumpy limestones in southwestern Vaigach, in Stratigrafiya i fauna siluriiskikh otlozhenii Vaigacha (Stratigraphy and Fauna of the Silurian Deposits of Vaigach), Leningrad: Nauchno-Issled. Inst. Geol. Arktiki, 1970, pp. 24–33.Google Scholar
  68. 68.
    Patrunov, D.K., Sedimentation types of rocks, deposition environments, and the cyclicity of the littoral complex of carbonate and carbonate–clay sediments of Silurian and Lower Devonian, in Siluriiskie i nizhnedevonskie otlozheniya ostrova Dolgogo (Silurian and Lower Devonian Deposits on Dolgij Island), Sverdlovsk: Ural. Nauchn. Tsentr Akad. Nauk SSSR, 1980, pp. 27–67.Google Scholar
  69. 69.
    Patrunov, D.K., Shurygina, M.V., and Cherkesova, S.V., Silurian and Lower Devonian on Dolgy Island, in Siluriiskie i nizhnedevonskie otlozheniya ostrova Dolgogo (Silurian and Lower Devonian Deposits on Dolgij Island), Sverdlovsk: Ural. Nauchn. Tsentr Akad. Nauk SSSR, 1980, pp. 5–26.Google Scholar
  70. 70.
    Pershina, A.I., Tsyganko, V.S., Shcherbakov, E.S., et al., Biostratigrafiya siluriiskikh i devonskikh otlozhenii Pechorskogo Urala (Biostratigraphy of Silurian and Devonian Deposits of the Pechora Urals), Leningrad: Nauka, 1971 [in Russian].Google Scholar
  71. 71.
    Postanovlenie MSK i ego postoyannykh komissii (Resolutions of the Interdepartmental Stratigraphic Committee and its Permanent Commissions), Zhamoida, A.I., Ed., St. Petersburg: Vseross. Nauchno-Issled. Geol. Inst., 2008, Iss. 38 [in Russian].Google Scholar
  72. 72.
    Prirodnye rezervuary neftegazonosnykh kompleksov Timano-Pechorskoi provintsii (Reservoirs of Oil and Gas Bearing Structures of the Timan–Pechora Province), St. Petersburg: Renome, 2011 [in Russian].Google Scholar
  73. 73.
    Puchkov, V.N., Batial’nye kompleksy passivnykh okrain geosinklinal’nykh oblastei (Bathyal Complexes of Passive Margins of Geosynclinal Zones), Moscow: Nauka, 1979 [in Russian].Google Scholar
  74. 74.
    Puchkov, V.N., Geologiya Urala i Priural’ya (aktual’nye voprosy stratigrafii, tektoniki, geodinamiki i metallogenii) (Geology of the Urals and Cis-Urals: Actual Problems of Stratigraphy, Tectonics, Geodynamics, and Metallogeny), Ufa: Dizain Poligraf Servis, 2010 [in Russian].Google Scholar
  75. 75.
    Rasskazova, N.V., Correlation of Upper Ordovician–Lower Devonian production horizons, in Stratigrafiya i litologiya neftegazonosnykh otlozhenii Timano-Pechorskoi provintsii (Stratigraphy and Lithology of Deposits of the Timan–Pechora Petroleum Province), Leningrad: Vseross. Neft. Nauchno-Issled. Geol. Inst., 1988, pp. 30–36.Google Scholar
  76. 76.
    Resheniya Mezhvedomstvennogo stratigraficheskogo soveshchaniya po ordoviku i siluru Vostochno-Evropeiskoi platformy (s regional’nymi stratigraficheskimi skhemami) (Resolutions of the Interdepartmental Stratigraphic Committee on the Ordovician and Silurian in the East European Platform (with Regional Stratigraphic Schemes)), Leningrad: Vseross. Nauchno-Issled. Geol. Inst., 1987 [in Russian].Google Scholar
  77. 77.
    Samtleben, C., Munnecke, A., Bickert, T., and Pätzold, J., The Silurian of Gotland (Sweden): facies interpretation based on stable isotopes in brachiopod shells, Geol. Rund., 1996, vol. 85, pp. 278–292.CrossRefGoogle Scholar
  78. 78.
    Samtleben, C., Munnecke, A., and Bickert, T., Development of facies and C/O-isotopes in transects through the Ludlow of Gotland: evidence for global and local influences on a shallow–marine environment, Facies, 2000, vol. 43, pp. 1–38.CrossRefGoogle Scholar
  79. 79.
    Scotese, C.R., Paleogeographic Atlas. Paleomap Project, Calgary, 2004.Google Scholar
  80. 80.
    Shcherbov, B.L., Solotchina, E.P., and Sukhorukov, F.V., Bor v produktakh blizhnego pereotlozheniya kaolinovykh kor vyvetrivaniya (Boron in Products of Local Redeposition of Kaolin Weathering Crusts), Novosibirsk: Inst. Geol. Geofiz. Sib. Otd. Akad. Nauk CCCP, 1985 [in Russian].Google Scholar
  81. 81.
    Shebolkin, D.N. and Männik, P., The Wenlockian sections in the southern part of the Chernyshev Ridge (Timan–Northern Urals region), Litosfera, 2014, no. 1, pp. 33–40.Google Scholar
  82. 82.
    Slavík, L., Kříž, J., and Carls, P., Reflection of the mid-Ludfordian Lau event in conodont faunas of Bohemia, Bull. Geosci., 2010, vol. 85, pp. 395–414.CrossRefGoogle Scholar
  83. 83.
    Stricanne, L., Munnecke, A., and Pross, J., Assessing mechanisms of environmental change: palynological signals across the Late Ludlow (Silurian) positive isotope excursion (δ13C, δ18O) on Gotland, Sweden, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2006, vol. 230, pp. 1–31.CrossRefGoogle Scholar
  84. 84.
    Subpolar Urals Field Trip Guidebook, Antoshkina, A., Malysheva, E., and Männik, P., Eds., Syktyvkar, 2000.Google Scholar
  85. 85.
    Summons, R.E., Bird, L.R., Gillespie, A.I., et al., Lipid biomarkers in ooids from different locations and ages: evidence for a common bacterial flora, Geobiology, 2013, vol. 11, no. 5, pp. 420–436.CrossRefGoogle Scholar
  86. 86.
    Taninskaya, N.V., Sedimentalogical criteria of reservoirs forecast of the Middle Ordovician and Lower Devonian deposits of Timan–Pechora Province, Petrol. Geol. Theor. Appl. Stud., 2010, vol. 5, no. 4. 2/52_2010.pdf.Google Scholar
  87. 87.
    Taninskaya, N.V., Vasiliev, N.Ya., Myasnikova, M.A., et al., Opportunities of geological and geophysical methods for diagnosis of organogenous buildups on the example of A. Titov field, Timan–Pechora Province, Petrol. Geol. Theor. Appl. Stud., 2015, vol. 10, no. 3. rub/4/34_2015.pdf.Google Scholar
  88. 88.
    The Dynamic Silurian Earth. Field Guide and Abstracts, August 15–22, 2005, Gotland, Sweden, Eriksson, M.E. and Calner, M., Eds., Uppsala: Geol. Surv. Sweden, 2005.Google Scholar
  89. 89.
    Timonin, N.I., Tektonika gryady Chernysheva (Tectonics of the Chernyshev Ridge), Leningrad: Nauka, 1975 [in Russian].Google Scholar
  90. 90.
    Trotter, J.A., Williams, I.S., Barnes, C.R., et al., New conodont δ18O records of Silurian climate change: implications for environmental and biological events, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2016, vol. 443, pp. 34–48.CrossRefGoogle Scholar
  91. 91.
    Unifitsirovannye i korrelyatsionnye stratigraficheskie skhemy Urala (Unified and Correlation Stratigraphic Schemes of the Urals), Antsygin, N.Ya., Popov, B.A., and Chuvashov, B.I., Eds., Ekaterinburg, PGO Uralgeologiya, 1993 [in Russian].Google Scholar
  92. 92.
    Vinogradov, V.I., Do excursions δ13S of Neoproterozoic–Cambrian carbonates reflect paleoclimatic settings? in XVIII Simp. po geokhimii stabil’nykh izotopov im. akad. A.P. Vinogradova (Proc. XVIII Symp. on Geochemistry of Stable Isotopes named after Acad. A.P. Vinogradov), Moscow: Inst. Geokhim. Analit. Khimii Ross. Akad. Nauk, 2007, pp. 66–67.Google Scholar
  93. 93.
    Wenzel, B. and Joachimski, M.M., Carbon and oxygen isotopic composition of Silurian brachiopods (Gotland/Sweden): palaeoceanographic implications, Palaeogeogr., Palaeoclimatol., Palaeoecol., 1996, vol. 122, no. 1, pp. 143–166.CrossRefGoogle Scholar
  94. 94.
    Younes, H., Calner, M., and Lehnert, O., The first continuous δ13C record across the Late Silurian Lau Event on Gotland, Sweden, GFF, 2016, pp. 1–7. doi 10.1080/ 11035897.2016.1227362Google Scholar
  95. 95.
    Zakharov, Yu.D., Smyshlyaeva, O.P., Popov, A.M., et al., Izotopnyi sostav pozdnemezozoiskikh organogennykh karbonatov Dal’nego Vostoka (stabil’nye izotopy kisloroda i ugleroda, osnovnye paleoklimaticheskie sobytiya i ikh global’naya korrelyatsiya) (Isotope Composition of Late Mesozoic Organogenic Carbonates of the Far East (Oxygen and Carbon Stable Isotopes, Major Climatic Events and Their Global Correlation), Vladivostok: Dal’nauka, 2006 [in Russian].Google Scholar
  96. 96.
    Zavarzin, G.A., Lektsii po prirodovedcheskoi mikrobiologii (Lectures on Nature Microbiology), Moscow: Nauka, 2003 [in Russian].Google Scholar
  97. 97.
    Zhemchugova, V.A., Melnikov, S.V., and Danilov, V.N., Nizhnii paleozoi Pechorskogo neftegazonosnogo basseina (stroenie, usloviya obrazovaniya, neftegazonosnost’) (The Lower Paleozoic of the Pechora Petroleum Basin (Structure, Sedimentation Conditions, and Petroleum Potential)), Moscow: Akad. Gorn. Nauk, 2001 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Geology, Komi Research Center, Ural Branch, Russian Academy of SciencesSyktyvkarRussia

Personalised recommendations