Advertisement

Petrology

, Volume 27, Issue 4, pp 370–385 | Cite as

X-Ray Computed Tomography as a Method for Reproducing 3D Characteristics of Sulfides and Spinel Disseminated in Plagiodunites from the Yoko-Dovyren Intrusion

  • D. V. Korost
  • A. A. AriskinEmail author
  • I. V. Pshenitsyn
  • A. N. Khomyak
Article
  • 24 Downloads

Abstract

The paper describes a methodology of applying X-ray computed tomography (CT) in studying textural–morphological characteristics of sulfide-bearing ultramafic rocks from the Yoko-Dovyren layered massif in the northern Baikal area, Buryatia, Russia. The dunites are used to illustrate the applicability of a reliable technique for distinguishing between grains of sulfides and spinel. The technique enables obtaining statistical characteristics of the 3D distribution and size of the mineral phases. The method of 3D reconstructions is demonstrated to be applicable at very low concentrations of sulfides: no less than 0.1–0.2 vol %. Differences between 3D models are determined for sulfide segregations of different size, in some instances with features of their orientation suggesting the direction of percolation and accumulation of the sulfide liquids. These data are consistent with the morphology of the largest sulfide segregations, whose concave parts adjoin the surface of the cumulus olivine and simultaneously grow into grains of the poikilitic plagioclase. Detailed information of these features is useful to identify fingerprints of infiltration and concentration of protosulfide liquids in highly crystallized cumulate systems.

Keywords:

X-ray computed tomography disseminated sulfides spinel intrusion 3D distribution infiltration of sulfide liquids 

Notes

ACKNOWLEDGMENTS

The authors thank G.S. Nikolaev (Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow) and E.V. Kislov (Geological Institute, Siberian Branch, Russian Academy of Sciences, Ulan-Ude) for help with the fieldwork and with collecting and studying the samples. We also thank V. Turkov and K. Ryazantsev (Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow) for manufacturing polished sections and samples for the CT studies. Informative discussions with Steve Barnes (CSIRO Mineral Resources, Perth, Australia) have largely predetermined the aiming of this project.

FUNDING

This study was financially supported by the Russian Science Foundation (Grant 16-17-10129).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Supplementary material

11495_2019_8025_MOESM1_ESM.pdf (6.6 mb)
11495_2019_8025_MOESM1_ESM.pdf
11495_2019_8025_MOESM2_ESM.pdf (6.9 mb)
11495_2019_8025_MOESM2_ESM.pdf

REFERENCES

  1. 1.
    Ariskin, A.A., Bychkov, K.A., and Nikolaev, G.S., Modeling of trace-element composition of sulfide liquid in a crystallizing basalt magma: development of the R-factor concept, Geochem. Int., 2017, vol. 55, no. 5, pp. 411–434.Google Scholar
  2. 2.
    Ariskin, A.A., Danyushevsky, L.V., Konnikov, E.G., et al., The Dovyren intrusive complex (northern Baikal region, Russia): isotope-geochemical markers of contamination of parental magmas and extreme enrichment of source, Russ. Geol. Geophys., 2015, vol. 56, no. 3, pp. 528–556.CrossRefGoogle Scholar
  3. 3.
    Ariskin, A.A., Konnikov, E.G., Danyushevsky, L.V., et al., The Dovyren Intrusive Complex: Problems of Petrology and Ni Sulfide Mineralization, Geochem. Int., 2009, vol. 47, no. 5, pp. 425–453.CrossRefGoogle Scholar
  4. 4.
    Ariskin, A.A., Konnikov, E.G., Danyushevsky, L.V., et al., Geochronology of the Dovyren intrusive complex, northwestern Baikal Area, Russia, in the Neoproterozoic, Geochem. Int., 2013, vol. 51, no. 11, pp. 859–875.CrossRefGoogle Scholar
  5. 5.
    Ariskin, A.A., Nikolaev, G.S., Danyushevsky, L.V., et al., Geochemical evidence for the fractionation of iridium group elements at the early stages of crystallization of the Dovyren magmas (northern Baikal area, Russia), Russ. Geol. Geophys., 2018, vol. 59, no. 5, pp. 411–434.CrossRefGoogle Scholar
  6. 6.
    Ariskin, A.A., Danyushevsky, L.V., Bychkov, K.A., et al., Modeling solubility of Fe–Ni sulfides in basaltic magmas: the effect of Ni in the melt, Econ. Geol., 2013, vol. 108, no. 8, pp. 1983–2003.CrossRefGoogle Scholar
  7. 7.
    Ariskin, A.A., Kislov, E.V., Danyushevsky, L.V., et al., Cu–Ni–PGE fertility of the Yoko–Dovyren layered massif (northern Transbaikalia, Russia): thermodynamic modeling of sulfide compositions in low mineralized dunites based on quantitative sulfide mineralogy, Mineral. Deposita, 2016, vol. 51, pp. 993–1011.CrossRefGoogle Scholar
  8. 8.
    Ariskin, A.A., Bychkov, K.A., Nikolaev, G.S., and Barmina, G.S., The Comagmat-5: modeling the effect of Fe–Ni sulfide immiscibility in crystallizing magmas and cumulates, J. Petrol., 2018a, vol. 59, no. 2, pp. 283–298.CrossRefGoogle Scholar
  9. 9.
    Ariskin, A., Danyushevsky, L., Nikolaev, G., et al., The Dovyren intrusive complex (southern Siberia, Russia): insights into dynamics of an open magma chamber with implications for parental magma origin, composition, and Cu–Ni–PGE fertility, Lithos, 2018b, vol. 302–303, pp. 242–262.CrossRefGoogle Scholar
  10. 10.
    Ariskin, A.A., Nikolaev, G.S., Danyushevsky, L.V., et al., Genetic interpretation of the distribution of PGE and chalcogens in sulfide-mineralized rocks from the Yoko-Dovyren layered intrusion, Geochem. Int., 2018c, vol. 56, no. 13, pp. 1322–1340.CrossRefGoogle Scholar
  11. 11.
    Baker, D.R., Mancini, L., Polacci, M., et al., An introduction to the application of X-ray microtomography to the three-dimensional study of igneous rocks, Lithos, 2012, vol. 148, pp. 262–276.CrossRefGoogle Scholar
  12. 12.
    Barnes, S.-J. and Lightfoot, P.C., Formation of magmatic nickel–sulfide ore deposits and processses affecting their copper and platinum–group element contents, Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., and Richards, J.P., Eds., Econ. Geol., 2005, vol. 100, pp. 179–213.Google Scholar
  13. 13.
    Barnes, S.J., Fiorentini, M.L., Austin, P., et al., Three-dimensional morphology of magmatic sulfides sheds light on ore formation and sulfide melt migration, Geology, 2008, vol. 36, pp. 655–658.CrossRefGoogle Scholar
  14. 14.
    Barnes, S.J., Osborne, G., Cook, D., et al., The Santa Rita nickel sulfide deposit in the Fazenda Mirabela Intrusion, Bahia, Brazil: geology, sulfide geochemistry and genesis, Econ. Geol., 2011, vol. 106, pp. 1083–1110.CrossRefGoogle Scholar
  15. 15.
    Barnes, S.J., Cruden, A.R., Arndt, N., and Saumur, B.M., The mineral system approach applied to magmatic Ni–Cu–PGE sulphide deposits, Ore Geol. Rev., 2016, vol. 76, pp. 296–316.CrossRefGoogle Scholar
  16. 16.
    Barnes, J.S. and Mungall, J.E., Le Vaillant, M., et al., Sulfide–silicate textures in magmatic Ni–Cu–PGE sulfide ore deposits: disseminated and net-textured ores, Am. Mineral., 2017, vol. 102, pp. 473–506.CrossRefGoogle Scholar
  17. 17.
    Campbell, I.H. and Naldrett, A.J., The influence of silicate:sulfide ratios on the geochemistry of magmatic sulfides, Econ. Geol., 1979, vol. 74, no. 6, pp. 1503–1506.CrossRefGoogle Scholar
  18. 18.
    Cawthorn, R.G., Contrasting sulphide contents of the Bushveld and Sudbury igneous complexes, Miner. Deposita, 2005, vol. 40, pp. 1–12.CrossRefGoogle Scholar
  19. 19.
    Chung, H.-Y. and Mungall, J.E., Physical constraints on the migration of immiscible fluids through partially molten silicates, with special reference to magmatic sulfide ores, Earth Planet. Sci. Lett., 2009, vol. 286, pp. 14–22.CrossRefGoogle Scholar
  20. 20.
    Feldkamp, L.A. and Jesion, G., 3-D X-ray computed tomography, Rev Prog. Quant. NDE, 1986, vol. 5A, pp. 555–566.Google Scholar
  21. 21.
    Fortin, M.–A., Riddle, J., Desjardins–Langlais, Y., and Baker, D.R., The effect of water on the sulfur concentration at sulfide saturation (SCSS) in natural melts, Geochim. Cosmochim. Acta, 2015, vol. 160, pp. 100–116.CrossRefGoogle Scholar
  22. 22.
    Godel, B., Barnes, S.–J., and Maier, W.D., 3-D distribution of sulfide minerals in the Merensky Reef (Bushveld Complex, South Africa) and the J-M Reef (Stillwater Complex, USA) and their relationship to microstructures using X-ray computed tomography, J. Petrol., 2006, vol. 47, pp. 1853–1872.CrossRefGoogle Scholar
  23. 23.
    Halmshaw, R., Non-Destructive Testing, London: Edward Arnold, 2nd edition, 1991.Google Scholar
  24. 24.
    Holwell, D.A. and McDonald, I., A review of the behavior of platinum group elements within natural magmatic sulfide ore systems. The importance of semimetals in governing partitioning behavior, Platinum Metals Reviews, 2010, vol. 54, no. 1, pp. 26–36.CrossRefGoogle Scholar
  25. 25.
    Holwell, D.A. and Keays, R.R., The formation of low-volume, high-tenor magmatic PGE–Au sulfide mineralization in closed systems: evidence from precious and base metal geochemistry of the Platinova Reef, Skaergaard intrusion, East Greenland, Econ. Geol., 2014, vol. 109, pp. 387–406.CrossRefGoogle Scholar
  26. 26.
    Karykowski, B.T., Maier, W.D., Groshev, N.Y., et al., Critical controls on the formation of contact–style PGE–Ni–Cu mineralization: evidence from the Paleoproterozoic Monchegorsk Complex, Kola Region, Russia, Econ. Geol., 2018, vol. 113, pp. 911–935.CrossRefGoogle Scholar
  27. 27.
    Keays, R., Lightfoot, P., and Hamlyn, P., Sulfide saturation history of the Stillwater Complex, Montana: chemostratigraphic variation in platinum group elements, Miner. Deposita, 2011, vol. 47, pp. 151–173.CrossRefGoogle Scholar
  28. 28.
    Kiseeva, E.S. and Wood, B.J., A simple model for chalcophile element partitioning between sulphide and silicate liquids with geochemical applications, Earth Planet. Sci. Lett., 2013, vol. 383, pp. 68–81.CrossRefGoogle Scholar
  29. 29.
    Kiseeva, E.S. and Wood, B.J., The effects of composition and temperature on chalcophile and lithophile element partitioning into magmatic sulphides, Earth Planet. Sci. Lett., 2015, vol. 424, pp. 280–294.CrossRefGoogle Scholar
  30. 30.
    Kislov, E.V., Ioko–Dovyrenskii rassloennyi massiv (Ioko–Dovyren Layered Massif), Ulan–Ude: Izd–vo Buryatskogo nauchnogo tsentra, 1998.Google Scholar
  31. 31.
    Konnikov, E.G., Differentsirovannye giperbazit–bazitovye kompleksy dokembriya Zabaikal’ya (Precambrian Differentiated Ultrabasic–Basic Complexes of Transbaikalia), Novosibirsk: Nauka, 1986.Google Scholar
  32. 32.
    Krivolutskaya, N. A. Siberian Traps and Pt–Cu–Ni Deposits in the Noril’sk Area, New York–Dordrecht–London: Psringer Chan Heidelberg, 2016.CrossRefGoogle Scholar
  33. 33.
    Li, C. and Ripley, E.M., Sulfur contents at sulfide–liquid or anhydrite saturation in silicate melts: empirical equations and example applications, Econ. Geol., 2009, vol. 104, pp. 405–412.CrossRefGoogle Scholar
  34. 34.
    Likhachev, A.P., Platino-medno-nikelevye i platinovye mestorozhdeniya (PGE–Copper–Nickel and PGE Deposits), Moscow: Eslan, 2006.Google Scholar
  35. 35.
    Maier, W.D., Platinum–group element (PGE) deposits and occurrences: mineralization styles, genetic concepts, and exploration criteria, J. Afr. Earth Sci., 2005, vol. 41, pp. 165–191.CrossRefGoogle Scholar
  36. 36.
    McCuaig, T.C., Beresford, S., and Hronsky, J., Translating the mineral systems approach into an effective exploration targeting system, Ore Geol. Rev., 2010, vol. 38, pp. 128–138.CrossRefGoogle Scholar
  37. 37.
    Mungall, J.E., Late–stage sulfide liquid mobility in the main mass of the Sudbury igneous complex: examples from the Cictor Deep, McCreedy East, and Trillabelle deposits, Econ. Geol., 2002, vol. 97, pp. 1563–1576.CrossRefGoogle Scholar
  38. 38.
    Mungall, J.E. and Su Shanguo, Interfacial tension between magmatic sulfide and silicate liquids: constraints on kinetics of sulfide liquation and sulfide migration through silicate rocks, Earth Planet. Sci. Lett., 2005, vol. 234, pp. 135–149.CrossRefGoogle Scholar
  39. 39.
    Naldrett, A.J., Magmatic Sulfide Deposits: Geology, Geochemistry, and Exploration, Heidelberg–Berlin: Springer–Verlag, 2004.CrossRefGoogle Scholar
  40. 40.
    Naldrett, A.J., Fundamentals of magmatic sulfide deposits, Magmatic Ni–Cu and PGE Deposits: Geology, Geochemistry and Genesis, Rev. Econ. Geol., C. Li and E.M. Ripley, Eds., Denver: Society of Economic Geologists, 2011, vol. 17, pp. 1–50.Google Scholar
  41. 41.
    Orsoev, D.A., Mekhonoshin, A.S., Kanakin S.V., et al., Gabbro–peridotite sills of the Late Riphean Dovyren plutonic complex (northern Baikal area, Russia), Russ. Geol. Geophys., 2018, vol. 59, no. 5, pp. 472–485.CrossRefGoogle Scholar
  42. 42.
    Pearce, M.A., Godel, B.M., Fisher, L.A., et al., Microscale data to macroscale processes: a review of microcharacterization applied to mineral systems, Characterization of Ore-Forming Systems from Geological, Geochemical and Geophysical Studies, Gessner, K., Blenkinsop, T.G., and Sorjonen-Ward, P., Eds., Geol. Soc. London: Spec. Publ., 2017, vol. 453. https://doi.org/10.1144/SP453.3Google Scholar
  43. 43.
    Ripley, E.M. and Li, C., Sulfide saturation in mafic magmas: is external sulfur required for magmatic Ni–Cu–(PGE) ore genesis?, Econ. Geol., 2013, vol. 108, pp. 45–58.CrossRefGoogle Scholar
  44. 44.
    Robertson, J.C., Barnes, J.S., and Le Vaillant, M., Dynamics of magmatic sulphide droplets during transport in silicate melts and implications for magmatic sulphide ore formation, J. Petrol., 2016, vol. 56, pp. 2445–2472.CrossRefGoogle Scholar
  45. 45.
    Rontgen, W., Uber eine neue art von strahlen (concerning a new type of radiation), Annu. Rev. Phys. Chem., New Ser., 1989, vol. 64, pp. 1–37.Google Scholar
  46. 46.
    Sinyakova, E.F. and Kosyakov, V.I., Physicochemical prerequisites for the formation of primary orebody zoning at copper–nickel sulfide deposits (by the example of the systems Fe–Ni–S and Cu–Fe–S), Russ. Geol. Geophys., 2012, vol. 53, no. 9, pp. 1126–1153.CrossRefGoogle Scholar
  47. 47.
    Sinyakova, E.F., Kosyakov, V.I., and Borisenko, A.S., Effect of the presence of As, Bi, and Te on the behavior of Pt metals during fractionation crystallization of sulfide magma, Dokl. Earth Sci., 2017, vol. 477, no. 4, pp. 1422–1426.CrossRefGoogle Scholar
  48. 48.
    Smol’kin, V.F., Fedotov, Zh.A., Neradovskii, Yu.N., et al., Rassloennye intruzii Monchegorskogo rudnogo raiona: petrologiya, orudenenie, izotopiya, glubinnoe stroenie (Layered Intrusions of the Monchegorsk Ore District: Petrology, Mineralization, Isotopy, and Deep Structure), Apatity: Kol’sk. Nauchn. Ts. RAN, 2004.Google Scholar
  49. 49.
    Spiridonov, E.M., Ore-magmatic systems of the Noril’sk ore field, Russ. Geol. Geophys., 2010, vol. 51, pp. 1059–1077.CrossRefGoogle Scholar
  50. 50.
    Tolstykh, N.D., Orsoev, D.A., Krivenko, A.P., and Izokh, A.E., Blagorodnometall’naya mineralizatsiya v rassloennykh ul’trabazit–bazitovykh massivakh yuga Sibirskoi platformy (Noble Metal Mineralization in the Layered Ultrabasic–Basic Massifs of the Southern Siberian Platform), Novosibirsk: Parallel’, 2008.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. V. Korost
    • 1
  • A. A. Ariskin
    • 1
    • 2
    Email author
  • I. V. Pshenitsyn
    • 1
    • 2
  • A. N. Khomyak
    • 1
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKhI), Russian Academy of SciencesMoscowRussia

Personalised recommendations