, Volume 27, Issue 3, pp 243–264 | Cite as

Compositions and Formation Conditions of Primitive Magmas of the Karymsky Volcanic Center, Kamchatka: Evidence from Melt Inclusions and Trace-Element Thermobarometry

  • D. P. TobelkoEmail author
  • M. V. PortnyaginEmail author
  • S. P. Krasheninnikov
  • E. N. Grib
  • P. Yu. Plechov


This paper reports the results of a study of naturally and experimentally quenched melt inclusions in magnesian olivine (Fo77–89) from a basalt sample from the Karymsky volcanic center, which is located in the middle segment of the Eastern Volcanic Front of Kamchatka. The conditions of parental magma formation were estimated using modern methods of trace-element thermometry. Based on direct H2O measurements in inclusions and thermometry of coexisting olivine and spinel, it was shown that the parent melts contained at least 4.5 wt % H2O and crystallized at a temperature of 1114 ± 27°C and an oxygen fugacity of ΔQFM = 1.5 ± 0.4. The obtained estimates of H2O content and crystallization temperature are among the first and currently most reliable data for the Eastern Volcanic Front of Kamchatka. The primary melt of the Karymsky volcanic center was derived from peridotitic material and could be produced by ~12–17% melting of an enriched MORB source (E-DMM) at ~1230–1250°C and ~1.5 GPa. Our estimates of mantle melting temperature beneath Kamchatka are slightly lower than values reported previously and up to 50°C lower than the dry peridotite solidus, which indicates the influence of a slab-derived hydrous melt. The combined approach to the estimation of the initial H2O content of melt employed in this study can provide a more reliable data in future investigations, and its application will probably decrease the existing temperature estimates for the mantle wedge above subduction zones.


thermometry H2melt inclusion olivine parental magma Karymsky volcanic center Kamchatka 



We are grateful to M. Thöner (GEOMAR) for help in microprobe analysis, S.G. Simakin and E.V. Potapov (Yaroslavl Filial of the Physical Technological Institute of the Russian Academy of Sciences) for the SIMS analysis of trace elements, M.S. Tikhonova (Moscow State University) for some of the Raman spectroscopic measurements, and T.A. Shishkina (Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences) for assistance and consultations during the Raman spectroscopic investigation of melt inclusions. We thank N.L. Mironov for advice during manuscript preparation and discussion of the obtained results and V.S. Kamenetsky for reviewing the manuscript, helpful comments, and suggestions.


The authors declare that they have no conflict of interest.


  1. 1.
    Almeev, R.R., Holtz, F., Koepke, J., et al., The effect of H2O on olivine crystallization in MORB: experimental calibration at 200 MPa, Am. Mineral., 2007, vol. 92, pp. 670–674.CrossRefGoogle Scholar
  2. 2.
    Ballhaus, C., Berry, R.F., and Green, D.H., High pressure experimental calibration of the olivine–orthopyroxene–spinel oxygen geobarometer: implications for the oxidation state of the upper mantle, Contrib. Mineral. Petrol., 1991, vol. 107, pp. 27–40.CrossRefGoogle Scholar
  3. 3.
    Braitseva, O.A. and Melekestsev, I.V., Eruptive history of Karymsky Volcano, Kamchatka, USSR, based on tephra stratigraphy and 14C dating, Bull. Volcanol., 1991, vol. 53, no. 3, pp. 195–206.CrossRefGoogle Scholar
  4. 4.
    Braitseva, O.A., Melekestsev, I.V., Ponomareva, V.V., and Sulerzhitsky, L.D., The ages of calderas, large explosive craters and active volcanoes in the Kuril–Kamchatka region, Bull. Volcanol., 1995, vol. 57, no. 6, pp. 383–402.Google Scholar
  5. 5.
    Bucholz, C.E., Gaetani, G.A., Behn, M.D., and Shimizu, N., Postentrapment modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions, Earth Planet. Sci. Lett., 2013, vol. 374, pp. 145–155.CrossRefGoogle Scholar
  6. 6.
    Chen, Y., Provost, A., Schiano, P., and Cluzel, N., The rate of water loss from olivine-hosted melt inclusions, Contrib. Mineral. Petrol., 2011, vol. 162, pp. 625–636.CrossRefGoogle Scholar
  7. 7.
    Coogan, L.A., Saunders, A.D., and Wilson, R.N., Aluminum-in-olivine thermometry of primitive basalts: evidence of an anomalously hot mantle source for large igneous provinces, Chem. Geol., 2014, vol. 368, pp. 1–10.CrossRefGoogle Scholar
  8. 8.
    Danyushevsky, L.V. and Plechov, P., Petrolog3: integrated software for modeling crystallization processes, Geochem., Geophys., Geosyst., 2011, vol. 12, no. 7.
  9. 9.
    Ford, C.E., Russel, D.G., Graven, J.A., and Fisk, M.R., Olivine–liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca, and Mn, J. Petrol., 1983, vol. 24, pp. 256–265.CrossRefGoogle Scholar
  10. 10.
    Gaetani, G.A., O’Leary, J.A., Shimizu, N., et al., Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions, Geology, 2012, vol. 40, pp. 915–918.CrossRefGoogle Scholar
  11. 11.
    Gorbatov, A., Kostoglodov, V., Suarez, G., and Gordeev, E., Seismicity and structure of the Kamchatka subduction zone, J. Geophys. Res., 1997, vol. 102, pp. 17883–17898.CrossRefGoogle Scholar
  12. 12.
    Grib, E.N., Mineralogical features of olivine-bearing basalts of the Karymsky volcanic center, Vestn. KRAUNTs. Ser. Nauki o Zemle, 2007, vol. 2, no. 10, pp. 17–32.Google Scholar
  13. 13.
    Grib, E.N. and Perepelov, A.B., Olivine basalts at the Karymskii volcanic center: mineralogy, petrogenesis, and magma sources, J. Volcanol. Seismol., 2008, vol. 2, no. 4, pp. 228–247.CrossRefGoogle Scholar
  14. 14.
    Grove, T.L., Till, C.B., and Krawczynski, M.J., The role of H2O in subduction zone magmatism, Annu. Rev. Earth Planet. Sci., 2012, vol. 40, no. 1, pp. 413–439.CrossRefGoogle Scholar
  15. 15.
    Ivanov, B.V., Izverzhenie Karymskogo vulkana v 1962–1965 gg. i vulkany Karymskoi gruppy (1962–1965 Eruptions of Karymsky Volcano and Volcanoes of the Karymsky Group), Moscow: Nauka, 1970.Google Scholar
  16. 16.
    Izbekov, P.E., Eichelberger, J.C., and Ivanov, B.V., The 1996 eruption of Karymsky Volcano, Kamchatka: historical record of basaltic replenishment of an andesite reservoir, J. Petrol., 2004, vol. 45, pp. 2325–2345.CrossRefGoogle Scholar
  17. 17.
    Jarosewich, E.J., Nelen, J.A., and Norberg, J.A., Reference samples for electron microprobe analysis, Geostand. Newslett., 1980, vol. 4, pp. 43–47.CrossRefGoogle Scholar
  18. 18.
    Kamenetsky, V.S., Zelensky, M., Gurenko, A., et al., Silicate–sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part II. Composition, liquidus assemblage and fractionation of the silicate melt, Chem. Geol., 2017, vol. 471, pp. 92–110.CrossRefGoogle Scholar
  19. 19.
    Kelley, K.A., Plank, T., Grove, T.L., et al., Mantle melting as a function of water content beneath back-arc basins, J. Geophys. Res., 2006, vol. 111, p. B09208.CrossRefGoogle Scholar
  20. 20.
    Kelley, K.A., Plank, T., Newman, S., et al., Mantle melting as a function of water content beneath the Mariana arc, J. Petrol., 2010, vol. 51, pp. 1711–1738.CrossRefGoogle Scholar
  21. 21.
    Khubunaya, S.A. and Sobolev, A.V., Primary melts of calc-alkaline magnesian basalts from the Klyuchevskoi Volcano, Kamchatka, Dokl. Earth Sci., 1998, vol. 360, no. 1, pp. 537–539.Google Scholar
  22. 22.
    Lange, R.A., The effect of H 2 O, CO 2 and F on the density and viscosity of silicate melts, Volatiles in Magmas. Rev. Mineral., Carrol, M.R. and Holloway, J.R., Eds., Washington: Mineral. Soc. Am., 1994, vol. 30, pp. 331—369.Google Scholar
  23. 23.
    Lee, C.-T.A., Luffi, P., Plank, T., et al., Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas, Earth Planet. Sci. Lett., 2009, vol. 279, no. 1, pp. 20–33.CrossRefGoogle Scholar
  24. 24.
    Lloyd, A.S., Plank, T., Ruprecht, P., et al., Volatile loss from melt inclusions in pyroclasts of differing sizes, Contrib. Mineral. Petrol., 2013, vol. 165, pp. 129–153.CrossRefGoogle Scholar
  25. 25.
    Le Losq, C., Neuville, D.R., Moretti, R., and Roux, J., Determination of water content in silicate glasses using Raman spectrometry: implications for the study of explosive volcanism, Am. Mineral., 2012, vol. 97, nos. 5–6, pp. 779–790.CrossRefGoogle Scholar
  26. 26.
    Mallmann, G. and O’Neill, H.St.C., Calibration of an empirical thermometer and oxybarometer based on the partitioning of Sc, Y and V between olivine and silicate melt, J. Petrol., 2013, vol. 54, no. 5, pp. 933–949.CrossRefGoogle Scholar
  27. 27.
    Mironov, N., Portnyagin, M., Botcharnicov, R., et al., Quantification of the CO2 budget and H2O–CO2 systematics in subduction-zone magmas through the experimental hydration of melt inclusions in olivine at high H2O pressure, Earth Planet. Sci. Lett., 2015, vol. 415, pp. 1–11.CrossRefGoogle Scholar
  28. 28.
    Naumov, V.B., Tolstykh, M.L., Grib, E.N., et al., Chemical composition, volatile components, and trace elements in melts of the Karymskii volcanic center, Kamchatka, and Golovnina Volcano, Kunashir Island: evidence from inclusions in minerals, Petrology, 2008, vol. 16, no. 1, pp. 1–18.CrossRefGoogle Scholar
  29. 29.
    Naumov, V.B., Dorofeeva, V.A., Girnis, A.V., and Yarmo-lyuk, V.V., Comparison of major, volatile, and trace element contents in the melts of mid-ocean ridges on the basis of data on inclusions in minerals and quenched glasses of rocks, Geochem. Int., 2014, vol. 52, no. 5, pp. 347–364.CrossRefGoogle Scholar
  30. 30.
    Nazarova, D.P., Portnyagin, M.V., Krasheninnikov, S.P., et al., Initial H2O content and conditions of parent magma origin for Gorely Volcano (Southern Kamchatka) estimated by trace element thermobarometry, Dokl. Earth Sci., 2017, vol. 472, no. 3, pp. 100–103.CrossRefGoogle Scholar
  31. 31.
    Nikolaev, G.S., Ariskin, A.A., Barmina, G.S., et al., Test of the Ballhaus–Berry–Green Ol–Opx–Sp oxybarometer and calibration of a new equation for estimating the redox state of melts saturated with olivine and spinel, Geochem. Int., 2016, vol. 54, no. 4, pp. 323–343.CrossRefGoogle Scholar
  32. 32.
    Plank, T., Cooper, L., and Manning, C.E., Emerging geothermometers for estimating slab surface temperatures, Nature Geosci., 2009, vol. 2, pp. 611–615.CrossRefGoogle Scholar
  33. 33.
    Plank, T., Kelley, K., Zimmer, M.M., et al., Why do mafic arc magmas contain ~4 wt % water on average?, Earth Planet. Sci. Lett., 2013, vol. 364, pp. 168–179.CrossRefGoogle Scholar
  34. 34.
    Plechov, P., Blundy, J., Nekrylov, N., et al., Petrology and volatile content of magmas erupted from Tolbachik Volcano, Kamchatka, 2012–2013, J. Volcanol. Geother. Res., 2015, vol. 307, pp. 182–199.CrossRefGoogle Scholar
  35. 35.
    Plechova, A.A., Portnyagin, M.V., and Bazanova L.I., The origin and evolution of the parental magmas of frontal volcanoes in Kamchatka: evidence from magmatic inclusions in olivine from Zhupanovsky Volcano, Geochem. Int., 2011, no. 8, pp. 743–767.Google Scholar
  36. 36.
    Portnyagin, M.V., Simakin, S.G., and Sobolev, A.V., Fluorine in primitive magmas of the Troodos ophiolite complex, Cyprus: analytical methods and main results, Geochem. Int., 2002, vol. 40, no. 7, pp. 625–632.Google Scholar
  37. 37.
    Portnyagin, M.V., Mironov, N.L., Matveev, S.V., and Plechov, P.Yu., Petrology of avachites, high-magnesian basalts of Avachinsky Volcano, Kamchatka: II. Melt inclusions in olivine, Petrology, 2005, vol. 13, no. 4, pp. 322–351.Google Scholar
  38. 38.
    Portnyagin, M.V., Hoernle, K., Plechov, P.Y., et al., Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka arc, Earth Planet. Sci. Lett., 2007, vol. 255, nos. 1–2, pp. 53–69.CrossRefGoogle Scholar
  39. 39.
    Portnyagin, M., Almeev, R., Matveev, S., and Holtz, F., Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma, Earth Planet. Sci. Lett., 2008, vol. 272, pp. 541–552.CrossRefGoogle Scholar
  40. 40.
    Portnyagin, M.V., Naumov, V.B., Mironov, N.L., et al., Composition and evolution of the melts erupted in 1996 at Karymskoe Lake, Eastern Kamchatka: evidence from inclusions in minerals, Geochem. Int. 2011, vol. 49, no. 11, pp. 1085–1110.CrossRefGoogle Scholar
  41. 41.
    Portnyagin, M.V., Mironov, N.L., and Nazarova, D.P., Copper partitioning between olivine and melt inclusions and its content in primitive island-arc magmas of Kamchatka, Petrology, 2017, vol. 25, no. 4, pp. 419–432.CrossRefGoogle Scholar
  42. 42.
    Ruscitto, D., Wallace, P.J., Cooper, L., and Plank, T., Global variations in H2O/Ce: II. Relationships to arc magma geochemistry and volatile fluxes, Geochem., Geophys., Geosyst., 2012, vol. 13, p. Q03025.CrossRefGoogle Scholar
  43. 43.
    Schmidt, M.W. and Poli, S., Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation, Earth Planet. Sci. Lett., 1998, vol. 163, pp. 361– 379.CrossRefGoogle Scholar
  44. 44.
    Shishkina, T.A., Botcharnikov, R.E., Holtz, F., et al., Solubility of H2O- and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa, Chem. Geol., 2010, vol. 277, pp. 115–125.CrossRefGoogle Scholar
  45. 45.
    Shishkina, T., Botcharnikov, R.E., Holtz, F., et al., Compositional and pressure effects on the solubility of H2O and CO2 in mafic melts, Chem. Geol., 2014, vol. 388, pp. 112–129.CrossRefGoogle Scholar
  46. 46.
    Shishkina, T.A., Portnyagin, M.V., Botcharnikov, R.E., et al., Experimental calibration and implications of olivine-melt vanadium oxybarometry for hydrous basaltic arc magmas, Am. Mineral., 2018, vol. 103, no. 3, pp. 369–383.CrossRefGoogle Scholar
  47. 47.
    Sisson, T.W. and Grove, T.L., Temperatures and H2O contents of low MgO high alumina basalts, Contrib. Mineral. Petrol., 1993, vol. 113, pp. 167–184.CrossRefGoogle Scholar
  48. 48.
    Sobolev, A.V. and Chaussidon, M., H2O concentrations in primary melts from island arcs and mid ocean ridges: implications for H2O storage and recycling in the mantle, Earth Planet. Sci. Lett., 1996, vol. 137, pp. 45–55.CrossRefGoogle Scholar
  49. 49.
    Sobolev, A.V., Hofmann, A.W., Kuzmin, D.V., et al., The amount of recycled crust in sources of mantle derived melts, Science, 2007, vol. 316, pp. 412–417.CrossRefGoogle Scholar
  50. 50.
    Sobolev, A.V., Asafov, E.V., Gurenko, A.A., et al., Komatiites reveal an Archean hydrous deep-mantle reservoir, Nature, 2016, vol. 531, no. 7596, pp. 628–632.CrossRefGoogle Scholar
  51. 51.
    Sparks, R.A.J., Barclay, J., Jaupart, C., et al., Physical aspects of magmatic degassing. I. Experimental and theoretical constraints on visiculation, Volatiles in Magmas. Reviews in Mineralogy, Carrol, M.R. and Holloway, J.R., Eds., Washington: Mineralogical Society of America, 1994, vol. 30, pp. 413–445.Google Scholar
  52. 52.
    Stolper, E. and Newman, S., The role of water in the petrogenesis of Mariana trough magmas, Earth Planet. Sci. Lett., 1994, vol. 121, pp. 293–325.CrossRefGoogle Scholar
  53. 53.
    Sun, S.-S. and Mcdonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Magmatism in the Ocean Basins, Saunders, A.D. and Norry, M.J., Eds., Geol. Soc. Spec. Publ. London, 1989, vol. 42, pp. 313–345.Google Scholar
  54. 54.
    Tolstykh, M.L., Naumov V.B., Ozerov, A.Yu., and Kononkova, N.N., Composition of magmas of the 1996 eruption at the Karymskii Volcanic Center, Kamchatka: evidence from melt inclusions, Geochem. Int., 2001, vol. 39, no. 5, pp. 447–458.Google Scholar
  55. 55.
    van Keken, P.E., Kiefer, B., and Peacock, S.M., High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle, Geochem., Geophys., Geosyst., 2002, vol. 3, no. 10. doi 10.1029/2001GC000256Google Scholar
  56. 56.
    Vulkanicheskii tsentr: stroenie, dinamika, veshchestvo (Karymskaya struktura) (Volcanic Center: Structure, Dynamics, and Composition (Karymsky Structure)), Masurenkov, Yu.P., Ed., Moscow: Nauka, 1980.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of SciencesMoscowRussia
  2. 2.GEOMAR Helmholtz Centre for Ocean ResearchKielGermany
  3. 3.Institute of Volcanology and Seismology, Far East Branch, Russian Academy of SciencesPetropavlovsk-KamchatskiiRussia
  4. 4.Faculty of Geology, Moscow State UniversityMoscowRussia
  5. 5.Fersman Mineralogical MuseumMoscowRussia

Personalised recommendations