Advertisement

Petrology

, Volume 27, Issue 1, pp 1–16 | Cite as

Reduced CO2 Fluid as an Agent of Ore-Forming Processes: A Case Study of Dolomite-Replacement Skarns at the Yoko-Dovyren Massif

  • A. G. SimakinEmail author
  • E. V. Kislov
  • T. P. Salova
  • O. Yu. Shaposhnikova
  • A. N. Nekrasov
Article
  • 2 Downloads

Abstract

The paper presents newly obtained geochemical data on outer-contact rocks and carbonate-replacement skarns of the Yoko-Dovyren layered ultramafic–mafic intrusion in the northern Baikal area. The rocks initially contained CO2-rich fluid with a high oxygen fugacity (up to NNO + 3–4), which was generated by the partial decomposition of dolomite and by reactions between SiO2 and carbonates. The skarn blue diopside is enriched in Pt (up to 0.2 ppm) and V (300 ppm), and the wollastonite zone of the skarns contains elevated Re concentrations (up to 0.4 ppm). The REE pattern of the contact-zone quartzite is identical to the REE patterns of phlogopite-bearing lherzolites from the lower contact part of the Yoko-Dovyren massif. These geochemical features of the rocks of the intrusion may be explained by the transfer and redeposition of material by reduced H2O–CO2 fluid. According to thermodynamic calculations, a reaction between H2O–CO2 fluid and high-Mg olivine at a subsolidus temperature of T = 950ºC and pressure P = 2 kbar should result in a decrease in the oxygen fugacity to QFM – 2 and, hence, generate much CO. According to the calculations, a low oxygen fugacity (close to QFM + 0.7) can also be maintained by pyrrhotite oxidation with H2O and CO2 fluid components under cumulus PT parameters. As a result of these reactions, the fluid should enrich in Pt extracted from magmatic sulfides, and this Pt can be redeposited in rocks, including those composing the skarn zones.

Keywords:

Yoko-Dovyren intrusion platinum blue diopside carbon monoxide skarn thermodynamic simulations 

Notes

ACKNOWLEDGMENTS

The authors thank V.K. Karandashev (Institute of Problems of the Technology of Microelectronics and Ultrapure Materials, Russian Academy of Sciences) for ICP-MS analysis of natural samples. L.Ya. Aranovich (Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences) and A.S. Mekhonoshin (Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences) are thanked for the informative reviews of the manuscript. We highly appreciate constructive criticism expressed by L.Ya. Aranovich, which allowed us to cardinally improve the quality of the thermodynamic calculations. During its final phase, this study was financially supported by the Russian Foundation for Basic Research, project no. 18-05-00597.

REFERENCES

  1. 1.
    Aird, H.M. and Boudreau, A.E., High-temperature carbonate minerals in the Stillwater Complex, montana, USA, Contrib. Mineral. Petrol., 2013, vol. 166, pp. 1143–1160.CrossRefGoogle Scholar
  2. 2.
    Altukhov, E.N., Gershanik, S.Yu., Glazunov, O.M., et al., Tectonic position and ore potential of mafic-ultramafic rocks of Northern Baikal region, Geol. Geofiz., 1990, no. 6, pp. 56–64.Google Scholar
  3. 3.
    Ariskin, A.A., Danyushevsky, L.V., Konnikov, E.G., et al., The Dovyren intrusive complex (northern Baikal region, Russia): isotope-geochemical markers of contamination of parental magmas and extreme enrichment of the source, Russ. Geol. Geophys., 2015, vol. 56, no. 3, pp. 411–434.CrossRefGoogle Scholar
  4. 4.
    Ariskin, A.A., Fomin, I.S., Zharkova, E.V., et al., Redox conditions during crystallization of ultramafic and gabbroic rocks of the Yoko–Dovyren Massif (based on the results of measurements of intrinsic oxygen fugacity of olivine), Geochem. Int., 2017, vol. 55, no. 7, pp. 595–607.CrossRefGoogle Scholar
  5. 5.
    Ariskin, A.A., Kostitsyn, Yu.A., Konnikov, E.G., Danyushevskii, L.V., et al., Geochronology of the Dovyren intrusive complex, Northwestern Baikal Area, Russia, in the Neoproterozoic, Geochem. Int., 2013, no. 11, pp. 859–875.Google Scholar
  6. 6.
    Ariskin, A.A., Kislov, E.V., Danyushevsky, L.V., et al., Cu–Ni–PGE fertility of the Yoko-Dovyren layered massif (Northern Transbaikalia, Russia): thermodynamic modeling of sulfide compositions in low mineralized dunite based on quantitative sulfide mineralogy, Mineral. Deposita, 2016, vol. 51, pp. 993–1011.CrossRefGoogle Scholar
  7. 7.
    Ballhaus, C. and Stumpfl, E.F., Sulfide and platinum mineralization in the Merensky Reef: evidence from hydrous silicates and fluid inclusions, Contrib. Mineral. Petrol., 1986, vol. 94, pp. 193–204.CrossRefGoogle Scholar
  8. 8.
    Ballhaus, C. and Sylvester, P., Noble metal enrichment processes in the Merensky Reef, Bushveld Complex, J. Petrol., 2000, vol. 41, pp. 545–561.CrossRefGoogle Scholar
  9. 9.
    Berman, R.G. and Aranovich, L.Y., Optimized standard state and solution properties of minerals, Contrib. Mineral. Petrol., 1996, vol. 126, nos. 1–2, pp. 1–24.CrossRefGoogle Scholar
  10. 10.
    Boudreau, A.E. and Meurer, W.P., Chromatographic separation of the platinum-group elements, base metals, gold and sulfur during degassing of a compacting and solidifying igneous crystal pile, Contrib. Mineral. Petrol., 1999, vol. 134, pp. 174–185.CrossRefGoogle Scholar
  11. 11.
    Canil, D. and Fedortchouk, Y., Olivine–liquid partitioning of vanadium and other trace elements, with application to modern and ancient picrites, Can. Mineral., 2001, vol. 39, pp. 319–330.CrossRefGoogle Scholar
  12. 12.
    Distanov, E.G. and Kovalev, K.R., Kholodninskoe stratiform sulfide–base metal deposit, Mestorozhdeniya Zabaikal’ya (Transbaikalian Deposits), Chita; M.: Geoinformmark, 1995, Vol. 1, pp. 83–93.Google Scholar
  13. 13.
    Doroshkevich, A., Sklyarov, E., Starikova, A., et al., Stable isotope (C, O, H) characteristics and genesis of the Tazheran brucite marbles and skarns, Olkhon region, Russia, Mineral. Petrol., 2017, vol. 111, pp. 399–416.CrossRefGoogle Scholar
  14. 14.
    Duan, Z.H. and Zhang, Z.G., Equation of state of the H2O–CO2 system up to 10 GPa and 2573 K: molecular dynamics simulations with ab initio potential surface, Geochim. Cosmochim. Acta, 2006, vol. 70, no. 9, pp. 2311–2324.CrossRefGoogle Scholar
  15. 15.
    Ferry, J.M., Ushikubo, T., and Valley, J.W., Formation of forsterite by silicification of dolomite during contact metamorphism, J. Petrol., 2011, vol. 52, no. 9, pp. 1619–1640.CrossRefGoogle Scholar
  16. 16.
    French, B.M. and Eugster, H.P., Experimental control of oxygen fugacities by graphite–gas equilibriums, J. Geophys. Res., 1965, vol. 70, no. 6, pp. 1529–1539.CrossRefGoogle Scholar
  17. 17.
    Frey, M. and Robinson, D., Low-Grade Metamorphism, Oxford: Blackwell Science, 1999.Google Scholar
  18. 18.
    Frost, B.R., Introduction to oxygen fugacity and its petrologic importance, Rev. Mineral., 1991, vol. 25, pp. 1–9.Google Scholar
  19. 19.
    Ganino, C., Arndt, N.T., Chauvel, C., et al., Melting of carbonate wall rocks and formation of the heterogeneous aureole of the Panzhihua intrusion, china, Geosci. Front., 2013, vol. 4, pp. 535–546.CrossRefGoogle Scholar
  20. 20.
    Holland, Т.J.В. and Powell, R., An internally consistent thermodynamic data set for phases of petrological interest, J. Metamorph. Geol., 1998, vol. 16, pp. 309–343.CrossRefGoogle Scholar
  21. 21.
    Jones, L.C., Rosenbauer, R., Goldsmith, J.I., et al., Carbonate control of H2 and CH4 production in serpentinization systems at elevated P-Ts, Geophys. Rev. Lett., 2010, vol. 37, L14306; doi 10.1029/2010GL043769Google Scholar
  22. 22.
    Kislov, E.V., Ioko-Dovyrenskii rassloennyi massiv (Yoko-Dovyren Layered Massif), BNTs SO RAN, 1998.Google Scholar
  23. 23.
    Konnikov, E.G., Tsygankov, A.A., and Vrublevskaya, T.T., Baikalo-Muiskii vulkano-plutonicheskii poyas: strukturno-veshchestvennye kompleksy i geodinamika (Baikal–Muya Plutonic Belt: Lithotectonic Complexes and Geodynamics), Moscow: GEOS, 1999.Google Scholar
  24. 24.
    Konnikov, E.G., Meurer, W.P., Neruchev, S.S., et al., Fluid regime of platinum group elements (PGE) and gold-bearing reef formation in the Dovyren mafic-ultramafic layered complex, eastern Siberia, Russia, Mineral. Deposita, 2000, vol. 35, pp. 526–532.CrossRefGoogle Scholar
  25. 25.
    Lepage, L.D., ILMAT: an Excel worksheet for ilmenite–magnetite geothermometry and geobarometry, Comput. Geosci, 2003, vol. 29, no. 5, pp. 673–678.CrossRefGoogle Scholar
  26. 26.
    Mathez, E.A., Magmatic metasomatism and formation of the Merensky Reef, Bushveld Complex, Contrib. Mineral. Petrol., 1995, vol. 119, pp. 277–286.CrossRefGoogle Scholar
  27. 27.
    Mungal, J.E. and Naldrett, A.J., Ore deposits of the platinum-group elements, GeoScienceWorld in Elements, 2008, vol. 4, pp. 253–258.CrossRefGoogle Scholar
  28. 28.
    Nikolaev, G.S., Bychkov, K.A., and Ariskin, A.A., Modeling olivine–spinel and olivine–spinel–sulfide cotectics during crystallization of ultramafic magmas, Ul’tramafit-mafitovye kompleksy: geologiya, stroenie, rudnyi potentsial: materialy V Mezhdunarodnoi konferentsii (Gremyachinsk, 2–6 sentyabrya 2017 g.) (Ultramafic–mafic Complexes: Structure and Ore Potential. Proceedings of 5th International Conference, Gremyachinsk, 2017), Ulan-Ude: Izd-vo Buryatskogo gosuniversiteta, 2017, pp. 196–198.Google Scholar
  29. 29.
    Pertsev, N.N. and Shabynin, L.I., Skarn, carbonate, and brucite xenoliths of the Yoko–Dovyren massif, Kontaktovye protsessy i orudenenie v gabbro-peridotitovykh intruziyakh (Contact Processes and Mineralization in the Gabbro–Peridotite Intrusions), Moscow: Nauka, 1978, pp. 85–96.Google Scholar
  30. 30.
    Putirka, K.D., Igneous thermometers and barometers based on plagioclase + liquid equilibria: tests of some existing models and new calibrations, Am. Mineral., 2005, vol. 90, nos. 2–3, pp. 336–346.CrossRefGoogle Scholar
  31. 31.
    Robie, R.A., Hemingway, B.S., and Fisher, J.R., Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures, US Geol. Surv. Bull., 1978, no. 1452.Google Scholar
  32. 32.
    Sack, R.O. and Ghiorso, M.S., Chromian spinels as petrogenetic indicators: thermodynamics and petrological applications, Am. Mineral., 1991, vol. 76, pp. 827–847.Google Scholar
  33. 33.
    Satake, M. and Mido, Y., Chemistry of transition elements, New Delhi: Discovery Publishing House, 2010.Google Scholar
  34. 34.
    Shi, P. and Saxena, S.K., Thermodynamic modeling of the C–H–O–S fluid system, Am. Mineral., 1992, vol. 77, nos. 9–10, pp. 1038–1049.Google Scholar
  35. 35.
    Simakin, A.G. and Shaposhnikova, O.Yu., Novel amphibole geobarometer for high-magnesium andesite and basalt magmas, Petrology, 2017, vol. 25, no. 2, pp. 226–239.CrossRefGoogle Scholar
  36. 36.
    Simakin, A.G., Salova, T.P., and Bondarenko, G.V., Experimental study of magmatic melt oxidation by CO2, Petrology, 2012, vol. 20, no. 7, pp. 593–606.CrossRefGoogle Scholar
  37. 37.
    Simakin, A.G., Salova, T.P., Gabitov, R.I., et al., Dry CO2–CO fluid as an important potential deep earth solvent, Geofluids, 2016, vol. 16, pp. 1043–1057.CrossRefGoogle Scholar
  38. 38.
    Simakin A.G., Devyatova V.N., Salova T.P., et al., Properties of reduced carbon dioxide fluid: evidence from experimental and thermodynamic modeling, Dokl. Earth Sci., 2018, vol. 478, pp. 70–73.CrossRefGoogle Scholar
  39. 39.
    Sun, S.-S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Magmatism in Ocean Basins, Saunders, A.D. and Norry M.J., Geol. Soc. London Spec. Publ., 1989, pp. 313–345.Google Scholar
  40. 40.
    Wenzel, T., Baumgartner, L.P., Brugmann, G.E., et al., Partial melting and assimilation of dolomitic xenoliths by mafic magma: the Yoko-Dovyren intrusion (north Baikal Region, Russia), J. Petrol., 2002, vol. 43, no. 11, pp. 2049–2074.CrossRefGoogle Scholar
  41. 41.
    http://models.kl-edi.ac.cn/models/h2oco2/index.htm.Google Scholar
  42. 42.
    https://earthref.org/GERM.Google Scholar
  43. 43.
    https://en.wikipedia.org/wiki/Thiol.Google Scholar
  44. 44.
    http://melts.ofm-research.org/CalcForms/index.html.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. G. Simakin
    • 1
    • 2
    Email author
  • E. V. Kislov
    • 3
  • T. P. Salova
    • 1
  • O. Yu. Shaposhnikova
    • 1
  • A. N. Nekrasov
    • 1
  1. 1.Korzhinskii Institute of Experimental Mineralogy (IEM), Russian Academy of SciencesChernogolovkaRussia
  2. 2.Schmidt Institute of Physics of the Earth (IFZ), Russian Academy of SciencesMoscowRussia
  3. 3.Geological Institute, Siberian Branch, Russian Academy of SciencesUlan-UdeRussia

Personalised recommendations