, Volume 27, Issue 1, pp 43–58 | Cite as

Tectonic Position of the Late Neoproterozoic–Early Paleozoic Metamorphic Belts within the Tuva–Mongolian Terrane of the Central Asian Orogenic Belt

  • I. K. KozakovEmail author
  • E. B. Salnikova
  • I. V. Anisimova
  • P. Ya. Azimov
  • V. P. Kovach
  • Yu. V. Plotkina
  • M. V. Stifeeva
  • A. M. Fedoseenko


The Tuva–Mongolian terrane (TMT) of the Central Asian Orogenic Belt is a composite structure with a Vendian–Cambrian terrigenous–carbonate cover. The formation of the northern part of TMT is marked by the granitoids of the Sumsunur Complex with an age of 785 ± 11 Ma. The Sangilen and Khan-Khukhay blocks of its southern part also form a composite structure, which originated during Early Paleozoic (500–490 Ma) low–moderate pressure regional metamorphism reaching amphibolites–granulite facies. The earlier high-pressure metamorphism was established in the Moren Complex of both the blocks. In the Sangilen block, this metamorphism reached conditions of kyanite–garnet–biotite–orthoclase subfacies of amphibolites facies (temperature ~750°C, pressure 9–10 kbar). The upper age limit of this metamorphism is determined by granites with an age of 536 ± 6 Ma, which cut across migmatized biotite gneisses of the Moren Complex. The latter are intruded by the granitoids of the Ortoadir pluton, which were previously dated at 521 ± 12 Ma (U-Pb method, TIMS). Its emplacement predated the Early Paleozoic low–moderate pressure metamorphism, the timing of which is constrained by syn- and postmetamorphic granitoids with ages of 496 ± 4 and 489 ± 3 Ma. The age of 513 ± 4 Ma established for the granitoids of the Ortoadir Complex in the Khan-Khukhay Block more accurately constrains the lower age boundary of collision processes. This determined the amalgamation of the fragments of the high-pressure metamorphic belt with basement and carbonate–shelf cover units of the Tuva–Mongolian terrane, as well as the upper age boundary of early metamorphism. The timing of the main mappable structure of the Khan-Khukhay Block and low–moderate pressure regional metamorphism is marked by the synmetamorphic granitoids with an age of 505 ± 2 Ma. In general, the metamorphic rocks of the Sangilen, Khan-Khukhay, and Kaakhem blocks can be considered as fragments of the Late Ediacaran high-pressure metamorphic belt, which were amalgamated to the western margin of TMT within 515–505 Ma, after emplacement of the granitoids of the Ortoadir Complex, and were reworked by regional Early Paleozoic low–moderate pressure metamorphism.


Central Asian Orogenic Belt Tuva–Mongolian terrane early Paleozoic geochronology zircon regional metamorphism magmatism 



This study was performed in the framework of State Task no. 0153-2018-0003 and the project of Russian Foundation for Basic Researches no. 17-05-00130.


  1. 1.
    Anisimova, I.V., Levitskii, I.V., Salnikova, E.B., et al., Age of the basement of the Gargan Block (East Sayan): results of U-Pb geochronological studies, Izotopnye sistemy i vremya geologicheskikh protsessov. Materialy IV Rossiiskoi konferentsii po izotopnoi geokhronologii (Isotope Systems and Timing of Geological Processes. Proceedings of 4th Conference on Isotope Geochronology), St. Petersburg: Tsentr informatsionnoi kul’tury, 2009, vol. 1, pp. 34–35.Google Scholar
  2. 2.
    Aranovich, L.Y. and Berman, R.G., Optimized standard state and solution properties of minerals. II. Comparisons, predictions, and applications, Contrib. Mineral. Petrol., 1996, vol. 126, nos. 1-2, pp. 25–37.CrossRefGoogle Scholar
  3. 3.
    Azimov, P.Ya., Kozakov, I.K., and Glebovitsky, V.A., Early Paleozoic UHT/LP metamorphism in the Sangilen Block of the Tuvino-Mongolian Massif, Dokl. Earth Sci., 2018, vol. 479, pp. 295–299.CrossRefGoogle Scholar
  4. 4.
    Badarch, G., Cunningham, W.D., and Windley, B.F., A new terrane subdivision for Mongolia: implications for Phanerozoic crustal growth of Central Asia, J. Asian Earth Science, 2002, vol. 21, pp. 87–110.CrossRefGoogle Scholar
  5. 5.
    Belichenko, V.G. and Boos, R.G., Bokson–Khubsugul–Dzabkhan paleomicrocontinent in the structure of the Central Asian Paleozoides, Geol. Geofiz., 1988, no. 12, pp. 20–28.Google Scholar
  6. 6.
    Berman, R.G., Internally-consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2, J. Petrol., 1988, vol. 29, no. 2, pp. 445–522.CrossRefGoogle Scholar
  7. 7.
    Berman, R.G., Thermobarometry using multiequilibrium calculations: a new technique with petrologic applications, Can. Mineral., 1991, vol. 29, no. 4, pp. 833–855.Google Scholar
  8. 8.
    Berman, R.G. and Aranovich, L.Y., Optimized standard state and solution properties of minerals. i. model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO–MgO–CaO–Al2O3–TiO2–SiO2, Contrib. Mineral. Petrol., 1996, vol. 126, nos. 1-2, pp. 1–24.CrossRefGoogle Scholar
  9. 9.
    Bibikova, E.V., Karpenko, S.F., Sumin, L.V., et al., U-Pb, Sm-Nd, and K-Ar age of the metamorphic and magmatic rocks of the Ol’khon Region (Western Transbaikalia), Geologiya i geokhronologiya dokembriya Sibirskoi platformy i ee skladchatogo obramleniya (Precambrian Geology and Geochronology of the Siberian Platform and its Fold Framing), Leningrad: Nauka, 1990, pp. 170–183.Google Scholar
  10. 10.
    Bold, U., Crowley, Ja.L., Smith, E.F., et al., Neoproterozoic to Early Paleozoic tectonic evolution of the Zavkhan terrane of Mongolia: implications for continental growth in the Central Asian Orogenic Belt, Lithosphere, 2016, vol. 8, no. 6, pp. 729–750.CrossRefGoogle Scholar
  11. 11.
    Buriánek, D., Schulmann, K., Hrdličková, K., et al., Geochemical and geochronological constraints on distinct Early-Neoproterozoic and Cambrian accretionary events along southern margin of the Baydrag continent in western Mongolia, Gondwana Res., 2017, vol. 47, pp. 200–227.CrossRefGoogle Scholar
  12. 12.
    Demoux, A., Kroner, A., Liu, D., and Badarch, G., Precambrian crystalline basement in Southern Mongolia as revealed by SHRIMP zircon dating, Int. J. Earth Sci. (Geol. Rundsch), 2009, vol. 98, pp. 1365–1380.CrossRefGoogle Scholar
  13. 13.
    Donskaya, T.V., Sklyarov, E.V., Gladkochub, D.P., et al., The Baikal Collisional Metamorphic Belt Dokl. Earth Sci., 2000, vol. 374, pp. 1075–1079.Google Scholar
  14. 14.
    Donskaya, T.V., Gladkochub, D.P., Fedorovsky, V.S., et al., Pre-collisional (≥0.5 Ga) complexes of the Olkhon Terrane (Southern Siberia) as an echo of events in the Central Asian Orogenic Belt, Gondwana Res., 2017, vol. 42, pp. 243–263.CrossRefGoogle Scholar
  15. 15.
    Gladkochub, D.P., Donskaya, T.V., Fedorovsky, V.S., et al., The Olkhon metamorphic terrane in the Baikal region: an early Paleozoic collage of Neoproterozoic active margin fragments, Russ. Geol. Geophys, 2010, vol. 51, no. 5, pp. 447–460.CrossRefGoogle Scholar
  16. 16.
    Gladkochub, D.P., Donskaya, T.V., and Wingate, M.T.D., Petrology, geochronology, and tectonic implications of c. 500 Ma metamorphic and igneous rocks along the northern margin of the Central-Asian Orogen (Olkhon terrane, Lake Baikal, Siberia), J. Geol. Soc. London, 2008, vol. 165, pp. 235–246.CrossRefGoogle Scholar
  17. 17.
    Goldstein, S.J. and Jacobsen, S.B., Nd and S isotopic systematics of rivers water suspended material: implications for crustal evolution, Earth Planet. Sci. Lett., 1988, vol. 87, pp. 249–265.CrossRefGoogle Scholar
  18. 18.
    Il’in, A.V., Geologicheskoe razvitie Yuzhnoi Sibiri i Mongolii v pozdnem dokembrii-kembrii (Geological Evolution of South Siberia and Mongolia in the Late Precambrian–Cambrian), Moscow: Nauka, 1982.Google Scholar
  19. 19.
    Jacobsen, S.B. and Wasserburg, G.J., Sm-Nd evolution of chondrites and achondrites, Earth Planet. Sci. Lett., 1984, vol. 67, pp. 137–150.CrossRefGoogle Scholar
  20. 20.
    Keto, L.S. and Jacobsen, S.B., Nd and Sr isotopic variations of Early Paleozoic oceans, Earth Planet. Sci. Lett., 1987, vol. 84, pp. 27–41.CrossRefGoogle Scholar
  21. 21.
    Khain, E.V., Bibikova, E.V., Kröner, A., et al., The most ancient ophiolite of Central Asian fold belt: U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications, Earth Planet. Sci. Lett., 2002, vol. 199, nos. 3–4, pp. 311–325.CrossRefGoogle Scholar
  22. 22.
    Kotov, A.B., Salnikova, E.B., Kovach, V.P., et al., Age of metamorphism of the Slyudyanka crystalline complex, southern Baikal Area: U-Pb geochronology of granitoids, Petrology, 1997, vol. 5, no. 4, pp. 338–349.Google Scholar
  23. 23.
    Kovach, V.P., Matukov, D.I., Berezhnaya, N.G., et al., SHRIMP zircon age of the Gargan block tonalites—find Early Precambrian basement of the Tuvino-Mongolian microcontinent, Central Asia mobile belt 32th Intern. Geological Congress, Florence: 2004, Pt 2, no. 1263.Google Scholar
  24. 24.
    Kovach, V.P., Kozakov, I.K., Salnikova, E.B., et al., Sources of terrigenous rocks of the Tsaganolom Formation of the shelf cover of the Dzabkhan microcontinent, in Izotopnoe datirovanie geologicheskikh protsessov: novye rezul’taty, podkhody i perspektivy. Materialy VI Rossiiskoi konferentsii po izotopnoi geokhronologii (Isotope Dating of Geological Processes: New Results, Approaches, and Prospects. Proceedings of 4th Russian Conference on Isotope Geochronology), St. Petersburg: IGGD RAN, 2015, pp. 106–108.Google Scholar
  25. 25.
    Kozakov, I.K., Stuctural features and metamorphism of the Precambrian granitoids of the Sangilen highland, Tuva, Geol. Geofiz., 1976, no. 12, pp. 159–160.Google Scholar
  26. 26.
    Kozakov, I.K. and Azimov, P.Ya., Geodynamics of the origin of granulites in the Sangilen Block of the Tuva–Mongolian Terrane, Central Asian Orogenic Belt, Petrology, 2017, vol. 25, no. 6, pp. 615–624.CrossRefGoogle Scholar
  27. 27.
    Kozakov, I.K., Kotov, A.B., Salnikova, E.B., et al., Metamorphic age of crystalline complexes of the Tuva–Mongolia massif: the U–Pb geochronology of granitoids, Petrology, 1999, vol. 7, no. 2, pp. 177–191.Google Scholar
  28. 28.
    Kozakov, I.K., Kotov, A.B., Salnikova, E.B., et al., Timing of the structural evolution of metamorphic rocks in the Tuva-Mongolian Massif, Geotectonics, 2001, vol. 35, no. 3, pp. 165–184.Google Scholar
  29. 29.
    Kozakov, I.K., Salnikova, E.B., Khain, E.V., et al., Early Caledonian crystalline rocks of the Lake Zone in Mongolia: formation history and tectonic settings as deduced from U–Pb and Sm–Nd datings, Geotectonics, 2002, vol. 36, no. 2, pp. 156–166.Google Scholar
  30. 30.
    Kozakov, I.K., Kovach, V.P., Yarmolyuk, V.V., et al., Crust-forming processes in the geologic development of the Tuva-Mongolia Massif: Sm-Nd isotopic and geochemical data for granitoids, Petrology, 2003, vol. 11, no. 5, pp. 444–463.Google Scholar
  31. 31.
    Kozakov, I.K., Nutman, A., Salnikova, E.B., et al., Metasedimentary complexes of the Tuva–Mongolian Massif: age, provenances, and tectonic position, Stratigraphy. Geol. Correlation, 2005, vol. 13, no. 1, pp. 1–20.Google Scholar
  32. 32.
    Kozakov, I.K., Salnikova, E.B., Yarmolyuk, V.V., et al., Convergent Boundaries and Related Igneous and Metamorphic Complexes in Caledonides of Central Asia, Geotectonics, 2012, vol. 46, no. 1, pp. 16–36.CrossRefGoogle Scholar
  33. 33.
    Kozakov, I.K., Salnikova, E.B., Kovach, V.P., et al., Main stages in the evolution and geodynamic setting of the South Hangay metamorphic belt, Central Asia, Petrology, 2015, vol. 23, no. 4, pp. 309–330.CrossRefGoogle Scholar
  34. 34.
    Kozakov, I.K., Kröner, A., and Kovach, V.P., Early Proterozoic stage in the formation of the basement of the Dzabkhan terrane of the eastern segment of the Central Asian Orogenic Belt, in Tektonika, glubinnoe stroenie i minerageniya Vostoka Azii: IX Kosyginskie chteniya, 2016. Materialy Vserossiiskoi konferentsii (Tectonics, Deep Structure, and Metallogeny of East Asia. 9th Kosygin Readings, 2016. Proceedings of All-Russian Conference), Khabarovsk: IT i G DVO RAN, 2016, pp. 35–38.Google Scholar
  35. 35.
    Kozakov, I.K., Kröner, A., Kovach, V.P., et al., Neoproterozoic stage (~960–930 Ma) in the formation of the island-arc complex of the Dzabkhan terrane of the eastern Central-Asian fold belt, in Tektonika sovremennykh i drevnikh okeanov i ikh okrain. Materialy XLIX tektonicheskogo soveshchaniya, posvyashchennogo 100-letiyu akademika Yu.M. Pushcharovskogo (Tectonics of the Modern and Ancient Oceans and their Margins. Proceedings of 49th Tectonic Conference Dedicated to the 100th Anniversary of the Academician Yu.M. Pushcharovsky), Moscow: GEOS, 2017a, pp. 181–184.Google Scholar
  36. 36.
    Kozakov, I.K., Kuznetsov, A.B., Erdenezhargal, Ch., et al., Neoproterozoic complexes of the shelf cover of the Dzabkhan terrane basement in the Central Asian Orogenic Belt, Stratigraphy. Geol. Correlation, 2017b, vol. 25, no. 5, pp. 479–491.CrossRefGoogle Scholar
  37. 37.
    Krogh, T.E., A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination, Geochim. Cosmochim. Acta, 1973, vol. 37, pp. 485–494.CrossRefGoogle Scholar
  38. 38.
    Krogh, T.E., Improved accuracy of U-Pb zircon by the creation of more concordant systems using an air abrasion technique, Geochim. Cosmochim. Acta, 1982, vol. 46, pp. 637–649.CrossRefGoogle Scholar
  39. 39.
    Kröner, A., Lehmann, J., Schulmann, K., et al., Lithostratigraphic and geochronological constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia: Early Paleozoic rifting followed by Late Paleozoic accretion, Am. J. Sci., 2010, vol. 310, pp. 523–574.CrossRefGoogle Scholar
  40. 40.
    Kuzmichev, A.B., Tektonicheskaya istoriya Tuvino-Mongol’skogo massiva: rannebaikal’skii, pozdnebaikal’skii i rannekaledonskii etapy (Tectonic History of the Tuva–Mongolian Massif: Early Baikalian, Late Baikalian, and Early Caledonian Stages), Moscow: PROBEL-2000, 2004.Google Scholar
  41. 41.
    Kuzmichev, A.B. and Larionov, A.N., Neoproterozoic island arcs in East Sayan: duration of magmatism (from U-Pb zircon dating of volcanic clastics), Russ. Geol. Geophys., 2013, vol. 54, no. 1, pp. 34–43.CrossRefGoogle Scholar
  42. 42.
    Kuzmichev, A.B. and Larionov, A.N., The Sarkhoi Group in East Sayan: Neoproterozoic (~ 770–800 Ma) volcanic belt of the Andean type, Russ. Geol. Geophys, 2011, vol. 52, no. 7, pp. 685–700.CrossRefGoogle Scholar
  43. 43.
    Kuz’michev, A.B., Zhuravlev, D.Z., Bibikova, E.V., and Kirnozova, T.I., Upper Riphean (790 Ma) granitoids in the Tuva–Mongolian massif: evidence for the Early Baikalian orogenesis, Geol. Geofiz., 2000, vol. 41, no. 10, pp. 1379–1383.Google Scholar
  44. 44.
    Kuzmichev, A.B., Bibikova, E.V., and Zhuravlev, D.Z., Neoproterozoic (~800 Ma) orogeny in the Tuva–Mongolia massif (Siberia): island arc–continent collision at the northeast Rodinia margin, Precambrian Res., 2001, vol. 110, pp. 109–126.CrossRefGoogle Scholar
  45. 45.
    Kuzmichev, A., Kröner, A., Hegner, E., et al., The Shishkhid ophiolite, northern Mongolia: a key to the reconstruction of a Neoproterozoic island-arc system in Central Asia, Precambrian Res., 2005, vol. 138, pp. 125–150.CrossRefGoogle Scholar
  46. 46.
    Kuznetsov A.B., Letnikova E.F., Vishnevskaya I.A., et al., Sr chemostratigraphy of carbonate sedimentary cover of the Tuva–Mongolian Microcontinent, Dokl. Earth Sci., 2010, vol. 432, no. 3, pp. 577–582.CrossRefGoogle Scholar
  47. 47.
    Lehmann, J., Schulmann, K., Lexa, O., et al., Structural constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia, Am. J. Sci., 2010, vol. 310, pp. 575–628.CrossRefGoogle Scholar
  48. 48.
    Ludwig, K.R., Pbdat for MS-DOS, version 1.21, U.S. Geol. Surv. Open-File Rept., 1991, 88–542.Google Scholar
  49. 49.
    Ludwig, K.R., Isoplot 3.70. A geochronological toolkit for Microsoft Excel, Berkeley: Geochronol. Center, Spec. Publ., 2003, no. 4.Google Scholar
  50. 50.
    Macdonald, F.A., Jones, D.S., and Schrag, D.P., Stratigraphic and tectonic implications of a newly discovered glacial diamictite-cap carbonate couplet in Southwestern Mongolia, Geology, 2009, vol. 37, no. 2, pp. 123–126.CrossRefGoogle Scholar
  51. 51.
    Mitrofanov, F.P., Kozakov, I.K., and Palei, I.P., Dokembrii Zapadnoi Mongolii i Yuzhnoi Tuvy (Precambrian Western Mngolia and Southern Tuva), Leningrad: Nauka, 1981.Google Scholar
  52. 52.
    Mossakovskii, A.A., Ruzhentsev, S.V., Samygin, S.G., and Kheraskova, T.N., Central Asian Orogenic Belt: geodynamic evolution and history of formation, Geotektonika, 1993, no. 6, pp. 3–33.Google Scholar
  53. 53.
    Nozhkin, A.D., Turkina, O.M., Bibikova, E.V., et al., Stage of metamorphism and granite formation in the Neoproterozoic accretionary–collisional belt in the northwestern East Sayan, in Izotopnaya geokhronologiya v reshenii problem geodinamiki i rudogeneza: Tez dokl (Isotope Geochronology in Solution of Geodynamic and Ore Genesis), St. Petersburg: Tsentr informatsionnoi kul’tury, 2003, pp. 339–341.Google Scholar
  54. 54.
    Rojas-Agramonte, Y., Kröner, A., Alexeiev, D.V., et al., Detrital and igneous zircon ages for supracrustal rocks of the Kyrgyz Tianshan and palaeogeographic implications, Gondwana Res., 2014, vol. 26, pp. 957–974.CrossRefGoogle Scholar
  55. 55.
    Rudnev, S.N., Serov, P.A., Kiselev, V.Yu., Vendian–Early Paleozoic granitoid magmatism of Eastern Tuva, Russ. Geol. Geophys., 2015, vol. 56, no. 9, pp. 1232–1255.CrossRefGoogle Scholar
  56. 56.
    Ruzhentsev, S.V., Badarch, G., Voznesenskaya, T.A., and Markova, N.G., Tectonics of Southern Mongolia, in Evolyutsiya geologicheskikh protsessov i metallogeniya Mongolii. Tr. Sovmestnoi Sovetsko-Mongol’skoi geologicheskoi ekspeditsii, (Evolution of the Geological Processes and Metallogeny of Mongolia), Moscow: Nauka, 1990. Vyp. 49, pp. 11–122.Google Scholar
  57. 57.
    Salnikova, E.B., Kozakov, I.K., Kotov, A.B., et al., Age of Palaeozoic granites and metamorphism in the Tuvino-Mongolian massif of the Central Asian mobile belt: loss of Precambrian Microcontinent, Precambrian Res., 2001, vol. 110, pp. 143–164.CrossRefGoogle Scholar
  58. 58.
    Shkol’nik, S.I., Stanevich, A.M., Reznitsky, L.Z., and Savel’eva, V.B., New data about structure and time of formation of the Khamar-Daban Terrane: U-Pb LA-ICP-MS zircon ages, Stratigraphy. Geol. Correlation, 2016, vol. 24, no. 1, pp. 19–38.CrossRefGoogle Scholar
  59. 59.
    Stacey, J.S. and Kramers, I.D., Approximation of terrestrial lead isotope evolution by a two-stage model, Earth Planet. Sci. Lett., 1975, vol. 26, no. 2, pp. 207–221.CrossRefGoogle Scholar
  60. 60.
    Steiger, R.H. and Jager, E., Subcomission of geochronology: convention of the use of decay constants in geo- and cosmochronology, Earth Planet. Sci. Lett., 1976, vol. 36, no. 2, pp. 359–362.CrossRefGoogle Scholar
  61. 61.
    Taylor, S.R. and McLennan, S.M., The Continental Crust: its Evolution and Composition, London: Blackwell, 1985.Google Scholar
  62. 62.
    Vladimirov, A.G., Volkova, N.I., Mekhonoshin, A.S., et al., The geodynamic model of formation of Early Caledonides in the Olkhon Region (West Pribaikalie), Dokl. Earth Sci., 2011, vol. 436, no. 2, pp. 203–209.CrossRefGoogle Scholar
  63. 63.
    Wilhem, C., Brian, F., Windley, B.F., and Stampfli, G.M., The Altaids of Central Asia: a tectonic and evolutionary innovative review, Earth Sci. Rev., 2012, vol. 113, pp. 303–341.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. K. Kozakov
    • 1
    Email author
  • E. B. Salnikova
    • 1
  • I. V. Anisimova
    • 1
  • P. Ya. Azimov
    • 1
  • V. P. Kovach
    • 1
  • Yu. V. Plotkina
    • 1
  • M. V. Stifeeva
    • 1
  • A. M. Fedoseenko
    • 1
  1. 1.Institute of Precambrian Geology and Geochronology, Russian Academy of SciencesSt-PetersburgRussia

Personalised recommendations