Journal of Volcanology and Seismology

, Volume 12, Issue 6, pp 434–439 | Cite as

A Seismic Bottom Station Based on a Molecular Electron Seismometer for Shelf Areas and Transitional Zones

  • I. P. BashilovEmail author
  • S. G. Volosov
  • V. A. Merkulov
  • N. P. Rybakov
  • Yu. V. Ryazantsev
  • S. Ya. Sukonkin
  • S. Yu. ChervinchukEmail author


This paper is concerned with the design of a portable seismic bottom station (PSBS) based on a molecular electron seismometer for research in seismology and volcanology (Sobisevich et al., 2008) and for dealing with a number of important applied problems (Bashilov, 2001) in the design of special monitoring systems, alarm systems, as well as the exploration and development of hydrocarbon deposits in shelf areas and transitional zones. The station is a further development of a portable bottom module, PBM (Bashilov et al., 2013) whose testing results are also presented in this article. The design has been modified and supplemented in response to the remarks made during testing on Lake Seliger (Bashilov et al., 2017).



  1. 1.
    Abramovich, I.A., Agafonov, V.M., Daragan, S.K., et al., The development of seismic sensors based on new technological principles (molecular electronics), Seismicheskie Pribory, 1999, no. 31, pp. 56–71.Google Scholar
  2. 2.
    Agafonov, V.M. and Krishtop, V.G., A study of the amplitude–frequency characteristic for a molecular electronic converter with a new geometry, Mikrosistemnaya Tekhnika, 2004, no. 9, pp. 40–45.Google Scholar
  3. 3.
    Bashilov, I.P., Instrumentation for geophysical surveys, monitoring of engineering structures and environment for safety reasons, Nauchnoe Priborostroenie, 2001, no. 3, pp. 9–11.Google Scholar
  4. 4.
    Bashilov, I.P., et al., Testing a portable seismic bottom module and the recovery of velocity section for the transitional zone of the Arabian Sea shelf, GIAB, 2013, no. 9, pp. 143–154.Google Scholar
  5. 5.
    Bashilov, I.P., Volosov, S.G., Merkulov, V.A., et al., Results from studies of seismic bottom station prototypes (TsDCC-M and MDM) for alarm systems, Nauka i Tekhnologicheskie Razrabotki, 2017, vol. 96, no. 3, pp. 19–32.Google Scholar
  6. 6.
    Levchenko, D.G., Registratsiya shirokopolosnykh seismicheskikh signalov i vozmozhnykh predvestnikov sil’nykh zemletryasenii na morskom dne (Recording of Broadband Seismic Signals and Possible Precursors of Large Earthquakes on the Seafloor), Mocow: Nauchnyi Mir, 2005.Google Scholar
  7. 7.
    Lobkovskii, L.I., Levchenko, D.G., Leonov, A.V., and Ambrosimov, A.K., Geoekologicheskii monitoring morskikh neftegazovykh akvatorii (Geoelecological Monitoring of Oil-and-Gas Water Areas in the Sea), Moscow: Nauka, 2005.Google Scholar
  8. 8.
    Sobisevich, A.L., Gorbatikov, A.V., and Ovsyuchenko, A.N., The deep structure of the mud volcano on Mt. Karabetov, Geofizika, 2008, vol. 422, no. 44, pp. 542–546.Google Scholar
  9. 9.
    Zagorskii, L.S. and Shkuratnik, V.L., A method for determining the vertical seismic section of a rock massif using Rayleigh waves, Akusticheskii Zhurnal, 2013, vol. 59, no. 2, pp. 222–231.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. P. Bashilov
    • 1
    Email author
  • S. G. Volosov
    • 2
  • V. A. Merkulov
    • 3
  • N. P. Rybakov
    • 4
  • Yu. V. Ryazantsev
    • 1
  • S. Ya. Sukonkin
    • 4
  • S. Yu. Chervinchuk
    • 1
    Email author
  1. 1.NTTs Geotekhpribor, Institute of Physics of the Earth, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Geosphere Dynamics, Russian Academy of SciencesMoscowRussia
  3. 3.FGUP PO OktyabrKamensk-Ural’skyRussia
  4. 4.FGUP Bureau for Design and Testing of Oceanographic Instruments, Russian Academy of SciencesMoscowRussia

Personalised recommendations