Advertisement

Human Physiology

, Volume 41, Issue 3, pp 269–279 | Cite as

Changes in EEG spectral characteristics in the course of neurofeedback training

  • V. N. KiroyEmail author
  • D. M. Lazurenko
  • I. E. Shepelev
  • N. R. Minyaeva
  • E. V. Aslanyan
  • O. M. Bakhtin
  • D. G. Shaposhnikov
  • B. M. Vladimirskiy
Article

Abstract

Spectral power (SP) ratios of the EEG α and β frequencies were used as neurofeedback (NFB) for ten apparently healthy subjects (university students) to control a computer cursor in a graphic interface in three scenarios. The results showed that the scenario that used the SP ratio of the α and β2 frequencies provided for the highest accuracy and best speed of task performance. The ratios including the β1 frequency were found to be less efficient because an increase or a decrease in its SP could occur together with an increase or a decrease of the SPs of the α and β2 frequencies. However, the subjects acquired the skill of controlling the cursor with an efficiency of 81%, which gradually grew during learning, after a relatively short period of time (5 training sessions within 2 weeks).

Keywords

electroencephalography neurofeedback power spectra multivariate analysis of variance (MANOVA) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    DiCara, L.V. and Miller, N.E., Instrumental learning of systolic blood pressure responses by curarized rats, Psychosom. Med., 1968, vol. 30, p. 489.PubMedCrossRefGoogle Scholar
  2. 2.
    Kamiya, J., Conscious control of brain wave, Psychol. Today, 1968, vol. 1, p. 56.Google Scholar
  3. 3.
    Adamchuk, A.V. and Skomorokhov, A.A., Polyfunctional multiparameter rehabilitation complex for functional biocontrol, Meditsinskii Alfavit. Bol’nitsa 3 (Medical Alphabet. Hospital 3), 2009, p. 24.Google Scholar
  4. 4.
    Makkonen, K.F., Structural design of biocontrolled modules for rehabilitation training as component of a network integrated information system and autonomous biotechnical systems for modifying the functional state of a patient, Extended Abstract of Doctoral (Med) Dissertation, Voronezh, 2009.Google Scholar
  5. 5.
    Fedotchev, A.I., Bondar’, A.T., and Kim, E.V., Adaptive control with biological feedback and control of the human functional state, Usp. Fiziol. Nauk, 2002, vol. 33, no. 3, p. 79.PubMedGoogle Scholar
  6. 6.
    Ramsay, J.R., Neurofeedback and neurocognitive training, Nonmedication Treatments for Adult ADHD: Evaluating Impact on Daily functioning and Well-Being, Washington, DC: American Psychological Association, 2010, p. 109; DOI: 10.1037/12056-006.CrossRefGoogle Scholar
  7. 7.
    Aslanyan, E.V., Kiroi, V.N., Lazurenko, D.M., and Bakhtin, O.M., Properties of neural processes and BFB training efficiency, Psikhol. Zh., 2013, vol. 34, no. 2, p. 108.Google Scholar
  8. 8.
    Shtark, M.B. and Skok, A.B., Clinical application of electroencephalography feedback, in Bioupravlenie 3: Teoriya i praktika (Biocontrol 3: Theory and Applications), Novosibirsk: IMBK, 1998, p. 131.Google Scholar
  9. 9.
    Bazanova, O.M., Comments for current interpretation EEG α activity: A review and analysis, J. Behav. Brain Sci., 2012, vol. 2, p. 239.CrossRefGoogle Scholar
  10. 10.
    Vernon, D., Egner, T., Cooper, N., et al., The effect of distinct neurofeedback training protocols on working memory, mental rotation and attention performance, J. Neurotherapy, 2004, vol. 8, no. 1, p. 100.Google Scholar
  11. 11.
    Zoefel, B., Huster, R.J., and Herrmann, C.S., Neurofeedback training of the upper α frequency band in EEG improves cognitive performance, NeuroImage, 2011, vol. 54, p. 1427.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Kamiya, J., Operant Control of the EEG α Rhythm and Some of Its Reported Effects on Consciousness. Biofeedback and Self-Control: An Aldine Reader on the Regulation of Bodily Processes and Consciousness, 1971.Google Scholar
  13. 13.
    Kamiya, J., The first communications about operant conditioning of the EEG, J. Neurotherapy, 2011, vol. 15, no. 1, p. 65.CrossRefGoogle Scholar
  14. 14.
    Kaplan, A.Ya., Byeon, J.G., Lim, J.J., et al., Unconscious operant conditioning in the paradigm of braincomputer interface based on color perception, Int. J. Neurosci., 2005, vol. 115, p. 781.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Sterman, M.B. and Thompson, L.M., Chapter twelve—Neurofeedback for seizure disorders: Origins, mechanisms and best practices, Clinical Neurotherapy, 2014, p. 301.CrossRefGoogle Scholar
  16. 16.
    Thornton, K.E. and Carmody, D.P., Traumatic brain injury rehabilitation: QEEG biofeedback treatment protocols, Appl. Psychophysiol. Biofeedback, 2009, vol. 34, no. 1, p. 59.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Romanchuk, O.I., Sindrom defitsita vnimaniya i giperaktivnosti u detei (Attention Deficit Hyperactivity Disorder in Children), Moscow: Genezis, 2010.Google Scholar
  18. 18.
    Maurizio, S., Liechti, M.D., Heinrich, H., et al., Comparing tomographic EEG neurofeedback and EMG biofeedback in children with attention-deficit/hyperactivity disorder, Original Research Article Biological Psychology, 2013, vol. 95, p. 31.CrossRefGoogle Scholar
  19. 19.
    Mehran, A., Rostami, R., and Sadeghi, V., Which attention-deficit/hyperactivity disorder children will be improved through neurofeedback therapy? A graph theoretical approach to neocortex neuronal network of ADHD, Neurosci. Let., 2012, vol. 516,issue 1, p. 156.Google Scholar
  20. 20.
    Pineda, J.A., Brang, D., Hecht, E., et al., Positive behavioral and electrophysiological changes following neurofeedback training in children with autism, Research in Autism Spectrum Disorders, 2008, vol. 2, p. 557.CrossRefGoogle Scholar
  21. 21.
    Doppelmayr, M., Klimesch, W., Stadler, W., et al., EEG α power and intelligence, Intelligence, 2002, vol. 3, p. 289.CrossRefGoogle Scholar
  22. 22.
    Kiroi, V.N., Interfeis mozg-komp’yuter (istoriya, sovremennoe sostoyanie, perspektivy) (Brain-Computer Interface: History, Current State, Prospects), Rostovon-Don: Izd-vo SFedU, 2011.Google Scholar
  23. 23.
    Pfurtscheller, G. and Neuper, C., Neurofeedback training for BCI control, brain-computer interfaces, The Frontiers Collection, 2010, p. 65.Google Scholar
  24. 24.
    Tan, D.S. and Nijholt, A., Brain-Computer Interface (Applying Our Minds to Human-Computer Interaction), Springer, 2010.Google Scholar
  25. 25.
    Hwang, H.J., Kwon, K., and Im, C.H., Neurofeedback-based motor imagery training for brain-computer interface (BCI), J. Neurosci. Methods, 2009, vol. 179, no. 1, p. 150.PubMedCrossRefGoogle Scholar
  26. 26.
    Pfurtscheller, G., Allison, B.Z., Brunner, C., et al., The hybrid BCI, F. Neuroscience published: 06 Aprio 2010b, DOI: 10.3389/fnpro.2010.00003.Google Scholar
  27. 27.
    Bashashati, A., Ward, R.K., Birch, G.E., et al., Fractal dimension-based EEG biofeedback system, Proceedings of the 25th Annual International Conference on the IEEG Engineering in Medicine and Biology Society (EMBS’03), September 2003, p. 2220.Google Scholar
  28. 28.
    Birbaumer, N., Breaking the silence: Brain-computer interfaces (BCI) for communication and motor control, Psychophysiology, 2006, vol. 6, p. 517.CrossRefGoogle Scholar
  29. 29.
    Birbaumer, N., Ramos Murguialday, A., Weber, C., and Montoya, P., Neurofeedback and brain-computer interface: Clinical applications, Int. Rev. Neurobiol., 2009, vol. 86, p. 107.PubMedCrossRefGoogle Scholar
  30. 30.
    Hoffmann, U., Vesin, J.M., Ebrahimi, T., and Diserens, K., An efficient p300-based brain-computer interface for disabled subjects, J. Neurosci. Methods, 2008, vol. 167, p. 115.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Vidal, J.J., Toward direct brain-computer communication, Annu. Rev. Biophys. Bioengineering, 1973, vol. 2, no. 1, p. 157.CrossRefGoogle Scholar
  32. 32.
    Enriquez-Geppert, S., Huster, R.J., Scharfenort, R., et al., Modulation of frontal-midline θ by neurofeedback, Biological Psychology, 2014, vol. 95, p. 59PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Dekker, M.K., Sitskoorn, M.M., Denissen, A.J., and van Boxtel, G.J., The time-course of α neurofeedback training effects in healthy participants, Biol. Psychol., 2013, vol. 94, p. 4.Google Scholar
  34. 34.
    Staufenbiel, S.M., Brouwer, A.M., Keizer, A.W., and Van Wouwe, N.C., Effect of β and γ neurofeedback on memory and intelligence in the elderly, Biol. Psychol., 2014, vol. 95, p. 74.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Gruzelier, J.H., Thompson, T., Redding, E., et al., Application of α/θ neurofeedback and heart rate variability training to young contemporary dancers: State anxiety and creativity, Int. J. Psychophysiol., 2014, vol. 93, issue 1, p. 105.PubMedCrossRefGoogle Scholar
  36. 36.
    Arns, M., Conners, C.K., and Kraemer, H.C., A decade of EEG θ/β ratio research in ADHD: A metaanalysis, J. Attention Disorders, 2013, vol. 17, no. 5, p. 374.CrossRefGoogle Scholar
  37. 37.
    Flisiak-Antonijczuk, H., Kalinowski, R., Adamowska, S., et al., 1862-The effects of EEG-neurofeedback on ADHD symptoms and EEG parameters, European Psychiatry, 2013, vol. 28, p. 1.CrossRefGoogle Scholar
  38. 38.
    Keizer, A.W., Verment, R.S., and Hommel, B., Enhancing cognitive control through neurofeedback: A role of γ-band activity in managing episodic retrieval, NeuroImage, 2010, vol. 49, no. 4, p. 3404.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Kiroi, V.N. and Belova, E.I., Mechanisms and role of oscillator activity of neuron populations in systemic activity of the brain, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2000, vol. 50, no. 2, p. 179.Google Scholar
  40. 40.
    Kiroi, V.N., Vladimirskii, B.M., Aslanyan, E.V., et al., Electrographic correlates of actual and imagined movements: Spectral analysis, Neurosci. Behav. Physiol., 2012, vol. 42, p. 21.CrossRefGoogle Scholar
  41. 41.
    Kostandov, E.A., Cheremushkin, E.A., Yakovenko, I.A., and Petrenko, N.E., Changes in the α rhythm upon Tntroduction of Go/NoGo stimuli in the context of an experiment with a set to an angry face, Hum. Physiol., 2014, vol. 41, no. 1, p. 8.CrossRefGoogle Scholar
  42. 42.
    Pei, X., Leuthardt, E.C., Gaona, C.M., et al., Spatiotemporal dynamics of electrocorticographic high γ activity during overt and covert word repetition, NeuroImage, 2011, vol. 54,issue 4, p. 2960.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Gunduz, A., Brunner, P., Daitch, A., et al., Decoding covert spatial attention using electrocorticographic (ECoG) signals in humans, NeuroImage, 2012, vol. 60,issue 4, p. 2285.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Dumenko, V.N., Functional role of noncortical activity in the processes of interregional interaction, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2014, no. 1, p. 3.Google Scholar
  45. 45.
    Kiroi, V.N., Voinov, V.B., Mamin, R.A., and Khachatur’yan, E.V., Spatial synchronization of brain bioelectrical activity in the state of intellectual activity, Fiziol. Chel., 1988, vol. 14, no. 2, p. 326.Google Scholar
  46. 46.
    Dan’ko, S.G., Ivanitskii, G.A., Boitsova, Yu.A., et al., Common and individual features in the difference of EEG frequency spectra during solving verbal and spatial problems, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2013, no. 4, p. 431.Google Scholar
  47. 47.
    Shepoval’nikov, A.N., Tsitseroshin, M.N., and Apanasionok, V.S., Formirovanie biopotentsial’nogo polya mozga cheloveka (Formation of the Biopotential Field of the Human Brain), Leningrad, 1979.Google Scholar
  48. 48.
    Danilova, N.N., Funktsional’nye sostoyaniya. Psikhofiziologiya: uchebnik dlya vuzov (Functional States. Psychophysiology: A Textbook for Higher Schools), Aleksandrov, Yu.I., Ed., St. Petersburg: Piter, 2nd ed., 2003.Google Scholar
  49. 49.
    Michel, C.M., Lehmann, D., Henggeler, B., and Brandeis, D., Localization of the sources of EEG δ, θ, α and β frequency bands using the FFT dipole approximation, EEG Clin. Neurophysiol., 1992, vol. 82,issue 1, p. 38.CrossRefGoogle Scholar
  50. 50.
    Egner, T. and Gruzelier, J.H., EEG biofeedback of low β band components: Frequency-specific effects on variables of attention and event-related brain potentials, Clin. Neurophysiol, 2004, vol. 115, no. 1, p. 131.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Yakovlev, N.M., Kositskaya, Z.V., Pinchuk, D.Yu., et al., Reorganization of the EEG pattern in adolescents with attention deficit and chemical abuse in the course of complex functional treatment, Psikhofarmakol. Biol. Narkol., 2005, vol. 5, no. 2, p. 957.Google Scholar
  52. 52.
    Nikishena, I.S., Ponomareva, V.A., Grin’-Yatsenko, V.A., and Kropotov, Yu.D., Mapping of changes in EEG spectrum power during a session of biofeedback training of the β1 rhythm, Hum. Physiol., 2004, vol. 30, no. 4, p. 379.CrossRefGoogle Scholar
  53. 53.
    Nikishena, I.S., Kropotov, Yu.D., Ponomarev, V.A., et al., Changes in EEG spectral power and coherence in the course of β1 training in children with attention disorders, Byull. Sib. Otd. Ros. Akad. Med. Nauk, 2004, no. 3, p. 74.Google Scholar
  54. 54.
    Benington, J.H. and Craig, Heller H., Restoration of brain energy metabolism as the function of sleep, Progress Neurobiol., 1995, vol. 45, no. 4, p. 347.CrossRefGoogle Scholar
  55. 55.
    Gao, L., Wang, J., Li, J., and Zheng, Y., Design of BCI based multi-information system to restore hand motor function for stroke patients, Systems, Man, and Cybernetics (SMC), 2013.Google Scholar
  56. 56.
    Lutsyuk, N.V., Eismont, E.V., and Pavlenko, V.B., Modulation of attention in healthy children via a series of EEG feedback sessions, Neirofiziologiya, 2006, vol. 38, p. 458.Google Scholar
  57. 57.
    Steiner, N.J., Frenette, E.C., Rene, K.M., et al., Inschool neurofeedback training for ADHD: Sustained improvements from a randomized control trial, Pediatrics, 2014, vol. 133, no. 3, p. 483.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Van Boxtel, G.J., Denissen, A.J., Jäger, M., et al., A novel self-guided approach to α activity training, Int. J. Psychophysiol., 2012, vol. 83, no. 3, p. 282.PubMedCrossRefGoogle Scholar
  59. 59.
    Van Dongen-Boomsma, M., Vollebregt, M.A., Slaats-Willemse, D., et al., A randomized placebo-controlled trial of electroencephalographic (EEG) neurofeedback in children with attention-deficit/hyperactivity disorder, J. Clin. Psychiatry, 2013, vol. 74, no. 8, p. 821.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Dzhebrailova, T.D. and Korobeinikova, I.I., Spatial organization of the EEG β2 rhythm and the efficiency of human cognitive activity, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2013, vol. 63, no. 6, p. 667.Google Scholar
  61. 61.
    Cannon, R., Lubar, J., Gerke, A., et al., EEG spectralpower and coherence: LORETA neurofeedback training in the anterior cingulate gyrus, J. Neurotherapy, 2006, vol. 10, no. 1, p. 5.CrossRefGoogle Scholar
  62. 62.
    Eismont, E.V., Alieva, T.A., Lutsyuk, N.V., et al., Application of the EEG biocontrol technology to correct the psychoemotional state in children, Byull. Sib. Med., 2013, vol. 12, no. 2, p. 175.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • V. N. Kiroy
    • 1
    Email author
  • D. M. Lazurenko
    • 1
  • I. E. Shepelev
    • 1
  • N. R. Minyaeva
    • 1
  • E. V. Aslanyan
    • 1
  • O. M. Bakhtin
    • 1
  • D. G. Shaposhnikov
    • 1
  • B. M. Vladimirskiy
    • 1
  1. 1.Kogan Research Institute for Neurocybernetics (Krinc)Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations