Programming and Computer Software

, Volume 45, Issue 8, pp 448–457 | Cite as

On Online Algorithms for Bin, Strip, and Box Packing, and Their Worst-Case and Average-Case Analysis

  • D. O. LazarevEmail author
  • N. N. KuzyurinEmail author


In this survey, we consider online algorithms for bin packing and strip packing problems, as well as their generalizations (multidimensional bin packing, multiple strip packing, and packing into strips of different widths). For the latter problem, only the worst-case analysis is described; for the other problems, both the worst-case and average-case (probabilistic) asymptotic ratios are presented. The best lower and upper bounds are considered. Basic algorithms and methods for their analysis are discussed.



  1. 1.
    Pastukhov, R.K., Korshunov, A.V., Turdakov, D.Y., and Kuznetsov, S.D., Improving quality of graph partitioning using multi-level optimization, Program. Comput. Software, 2015, vol. 41, no. 5, pp. 302–306. MathSciNetCrossRefGoogle Scholar
  2. 2.
    López, J., Kushik, N., and Yevtushenko, N., Source code optimization using equivalent mutants, Inf. Software Technol., 2018, pp. 138–141. CrossRefGoogle Scholar
  3. 3.
    Massobrio, R., Nesmachnow, S., Tchernykh, A., Avetisyan, A., and Radchenko, G., Towards a cloud computing paradigm for big data analysis in smart cities, Tr. Inst. Sistemnogo Program. Ross. Akad. Nauk (Proc. Inst. Syst. Program. Russ. Acad. Sci.), 2016, vol. 28, no. 6, pp. 121–140. CrossRefGoogle Scholar
  4. 4.
    Anichkin, A.S. and Semenov, V.A., Mathematical formalization of project scheduling problems, Tr. Inst. Sistemnogo Program. Ross. Akad. Nauk (Proc. Inst. Syst. Program. Russ. Acad. Sci.), 2017, vol. 29, no. 2, pp. 231–256. CrossRefGoogle Scholar
  5. 5.
    Zelenova, S.A. and Zelenov, S.V., Non-conflict scheduling criterion for strict periodic tasks, Tr. Inst. Sistemnogo Program. Ross. Akad. Nauk (Proc. Inst. Syst. Program. Russ. Acad. Sci.), 2017, vol. 29, no. 6, pp. 183–202. CrossRefGoogle Scholar
  6. 6.
    Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., and Graham, R.L., Worst-case performance bounds for simple one-dimensional packing algorithms, SIAM J. Comput., 1974, vol. 3, no. 4, pp. 299–325.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ghalam, L. and Grosu, D., A parallel approximation algorithm for scheduling identical machines, Proc. IEEE Int. Parallel and Distributed Processing Symposium Workshops, 2017, pp. 619–628.Google Scholar
  8. 8.
    Sheikhalishahi, M., Wallace, R.M., Grandinetti, L., Vazquez-Poletti, J.L., and Guerriero, F., A multi-dimensional job scheduling, Future Gener. Comput. Syst., 2016, vol. 54, pp. 123–131.CrossRefGoogle Scholar
  9. 9.
    Feoktistov, A., Sidorov, I., Tchernykh, A., Edelev, A., Zorkalzev, V., Kostromin, R., Gorsky, S., Bychkov, I., and Avetisyan, A., Multi-agent approach for dynamic elasticity of virtual machines provisioning in heterogeneous distributed computing environment, Proc. Int. Conf. High Performance Computing and Simulation (HPCS), 2018, pp. 909–916.
  10. 10.
    Tchernykh, A., Babenko, M., Chervyakov, N., Miranda-Lopez, V., Cortes-Mendoza, J.M., Du, Z., Navaux, P.O., and Avetisyan, A., Analysis of secured distributed cloud data storage based on multilevel RNS, Proc. IEEE Conf. Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2018, pp. 382–386.
  11. 11.
    Tchernykh, A., Schwiegelshohn, U., Yahyapour, R., and Kuzjurin, N., On-line hierarchical job scheduling on grids with admissible allocation, J. Scheduling, 2010, vol. 13, no. 5, pp. 545–552.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Tshernykh, A., Ramirez, J.M., Avetisyan, A., Kuzjurin, N., Grushin, D., and Zhuk, S., Two-level job-scheduling strategies for a computational grid, Lect. Notes Comput. Sci., vol. 3911, pp. 774–781.Google Scholar
  13. 13.
    Cohil, B., Shah, S., Goleshha, Y., and Patel, D., A Comparative analysis of virtual machine placement techniques in the cloud environment, Int. J. Comput. Appl., 2016, vol. 156, no. 14, pp. 12–18.Google Scholar
  14. 14.
    Garey, M.R., Graham, R.L., and Ullman, J.D., Worst-case analysis of memory allocation algorithms, Proc. 4th Annu. ACM Symp. Theory of Computing, 1972, pp. 143–150.Google Scholar
  15. 15.
    Trushnikov, M.A., Probabilistic analysis of a new strip packing algorithm, Tr. Inst. Sistemnogo Program. Ross. Akad. Nauk (Proc. Inst. Syst. Program. Russ. Acad. Sci.), 2013, vol. 24, pp. 457–468. CrossRefGoogle Scholar
  16. 16.
    Varnovskiy, N.P., Martishin, S.A., Khrapchenko, M.V., and Shokurov, A.V., Secure cloud computing based on threshold homomorphic encryption, Program. Comput. Software, 2015, vol. 41, no. 4, pp. 215–218. MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Shor, P.W., The average-case analysis of some on-line algorithms for bin packing, Combinatorica, 1986, vol. 6, no. 4, pp. 179–200.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Garey, M.R. and Johnson, D.S., Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman: San Francisco, 1979.zbMATHGoogle Scholar
  19. 19.
    Johnson, D.S., Near-optimal bin packing algorithms, PhD (Department of Mathematics) Thesis, Massachusetts Institute of Technology, Cambridge, 1973.Google Scholar
  20. 20.
    Garey, M.R., Graham, R.L., Johnson, D.S., and Yao, A.C., Resource constrained scheduling as generalized bin packing, J. Comb. Theory, Ser. A, 1976, vol. 21, no. 3, pp. 257–298.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Gambosi, G., Postiglione, A., and Talamo, M.M., New algorithms for online bin packing, Proc. 1st Ital. Conf. Algorithms and Complexity, 1990, pp. 44–59.Google Scholar
  22. 22.
    Ivcovi, Z. and Lloyd, E., Fully dynamic algorithms for bin packing: Being (mostly) myopic helps, Lect. Notes Comput. Sci., vol. 726, pp. 224–235.Google Scholar
  23. 23.
    Yao, A.C., New algorithms for bin packing, J. ACM, 1981, vol. 27, no. 2, pp. 207–227.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Seiden, S.S., On the online bin packing problem, Lect. Notes Comput. Sci., 2002, vol. 2076, pp. 207–227.zbMATHGoogle Scholar
  25. 25.
    Brown, J.D., A lower bound for on-line one dimensional bin packing algorithms, Technical report R-864, Coordinated Science laboratory, Univ. of Illinois, Urbana, 1979.Google Scholar
  26. 26.
    Vliet, A., An improved lower bound for on-line bin packing algorithms, Inf. Process. Lett., 1992, vol. 43, no. 5, pp. 277–284.MathSciNetCrossRefGoogle Scholar
  27. 27.
    Breitgand, D. and Epstein, A., Improving consolidations of virtual machines with risk-aware bandwidth oversubscription in compute clouds, Proc. IEEE INFCOM, 2012, pp. 2861–2865.Google Scholar
  28. 28.
    Coffman, E.G. and Shor, P.W., A simple proof of the sqrt(n log3/4 n) upright matching bound, SIAM J. Discrete Math., 1991, vol. 4, no. 1, pp. 48–57.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Karp, R.M., Luby, M., and Marchetti-Spaccamela, A., A probabilistic analysis of multidimensional bin packing problem, Proc. 16th Annu. ACM Symp. Theory of Computing, 1984, pp. 289–298.Google Scholar
  30. 30.
    Ajtai, M., Komlós, J., and Tusnadi, G., On optimal matchings, Combinatorica, 1984, vol. 4, no. 4, pp. 259–264.MathSciNetCrossRefGoogle Scholar
  31. 31.
    Leighton, F.T. and Shor, P., Tight bonds for minimax grid matching with application to the average-case analysis of algorithms, Proc. 18th Annu. ACM Symp. Theory of Computing, 1986, pp. 91–103.Google Scholar
  32. 32.
    Coffman, E.G., Courcoubetis, C., Garey, M.R., Johnson, D.S., McGeoch, L.A., Shor, P.W., Weber, R., and Yannakakis, M., Fundamental discrepancies between average-case analysis under discrete and continuous distributions: A bin packing study, Proc. 21st Annu. ACM Symp. Theory of Computing, 1991, pp. 230–240.Google Scholar
  33. 33.
    Shor, P.W., How to pack better than Best Fit: Tight bounds for average-case online bin packing, Proc. 32nd Annu. Symp. Foundations of Computer Science, 1991, pp. 752–759.Google Scholar
  34. 34.
    Galambos, G. and van Vliet, A., Lower bounds for 1-, 2-, and 3- dimensional on-line bin packing algorithms, Comput., 1994, vol. 52, no. 3, pp. 281–297.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Han, X., Chin, F.Y.L., Ting, H.-F., Zhang, G., and Zhang, Y., A new upper bound 2.5545 on 2D online bin packing, ACM Trans. Algorithms, 2011, vol. 7, no. 4.MathSciNetCrossRefGoogle Scholar
  36. 36.
    Csirik, J. and van Vliet, A., An on-line algorithm for multidimensional bin packing, Oper. Res. Lett., 1993, vol. 13, no. 3, pp. 149–158.MathSciNetCrossRefGoogle Scholar
  37. 37.
    Epstein, L. and van Stee, R., Optimal online algorithms for multidimensional packing problems, Proc. 15th Annu. ACM-CIAM Symp. Discrete Algorithms, 2004, pp. 214–223.Google Scholar
  38. 38.
    Chang, E.-C., Wang, W., and Kankanhalli, M.S., Multidimensional on-line bin-packing: An algorithm and its average-case analysis, Inf. Process. Lett., 1993, vol. 48, no. 3, pp. 121–125.MathSciNetCrossRefGoogle Scholar
  39. 39.
    Baker, B.S., Coffman, E.G., and Rivest, R.L., Orthogonal packings in two dimensions, SIAM J. Comput., 1980, vol. 9, no. 4, pp. 846–855.MathSciNetCrossRefGoogle Scholar
  40. 40.
    Baker, B.S. and Schwarz, J.S., Shelf algorithms for two-dimensional packing problems, SIAM J. Comput., 1983, vol. 12, no. 3, pp. 508–525.MathSciNetCrossRefGoogle Scholar
  41. 41.
    Csirik, J. and Woeginger, G.J., Shelf algorithms for on-line strip packing, Inf. Process. Lett., 1997, vol. 63, no. 4, pp. 171–175.MathSciNetCrossRefGoogle Scholar
  42. 42.
    Han, X., Iwama, K., Ye, D., and Zhang, G., Strip packing vs. bin packing, Lect. Notes Comp. Sci., 2007, vol. 4508, pp. 358–367.CrossRefGoogle Scholar
  43. 43.
    Coffman, E.G. and Shor, P.W., Packing in two dimensions: Asymptotic average-case analysis of algorithms, Algorithmica, 1993, vol. 9, no. 3, pp. 253–277.MathSciNetCrossRefGoogle Scholar
  44. 44.
    Kuzjurin, N.N. and Pospelov, A.I., Probabilistic analysis of different shelf algorithms for packing rectangles into a strip, Tr. Inst. Sistemnogo Program. Ross. Akad. Nauk (Proc. Inst. Syst. Program. Russ. Acad. Sci.), 2007, vol. 12, pp. 17–26.Google Scholar
  45. 45.
    Kuzyurin, N.N. and Pospelov, A.I., Probabilistic analysis of a new class of strip packing algorithms, Comput. Math. Math. Phys., 2011, vol. 51, no. 10.MathSciNetCrossRefGoogle Scholar
  46. 46.
    Trushnikov, M.A., On one problem of Koffman–Shor connected to strip packing problem, Tr. Inst. Sistemnogo Program. Ross. Akad. Nauk (Proc. Inst. Syst. Program. Russ. Acad. Sci.), 2012, vol. 22, pp. 456–462. CrossRefGoogle Scholar
  47. 47.
    Lazarev, D.O. and Kuzyrin, N.N., An algorithm for multiple strip package and its average case evaluation, Tr. Inst. Sistemnogo Program. Ross. Akad. Nauk (Proc. Inst. Syst. Program. Russ. Acad. Sci.), 2017, vol. 29, no. 6, pp. 221–228. CrossRefGoogle Scholar
  48. 48.
    Kuzjurin, N.N., Grushin, D.A., and Fomin, A., Two-dimensional packing problems and optimization in distributed computing systems, Tr. Inst. Sistemnogo Program. Ross. Akad. Nauk (Proc. Inst. Syst. Program. Russ. Acad. Sci.), 2014, vol. 26, no. 1, pp. 483–502. CrossRefGoogle Scholar
  49. 49.
    Ye, D., Han, X., and Zhang, G., Online multiple-strip packing, Theor. Comput. Sci., 2011, vol. 412, no. 3, pp. 233–239.MathSciNetCrossRefGoogle Scholar
  50. 50.
    Zhuk, S.N., Approximation algorithms for packing rectangles into several strips, Discrete Math. Appl., 2006, vol. 16, no. 1, pp. 73–85.MathSciNetCrossRefGoogle Scholar
  51. 51.
    Zhuk, S.N., Analysis of some heuristics of packing rectangles into several strips, Tr. Inst. Sistemnogo Program. Ross. Akad. Nauk (Proc. Inst. Syst. Program. Russ. Acad. Sci.), 2004, vol. 6, pp. 13–26.Google Scholar
  52. 52.
    Zhuk, S.N., Online algorithm for packing rectangles into several strips with guaranteed accuracy estimates, Tr. Inst. Sistemnogo Program. Ross. Akad. Nauk (Proc. Inst. Syst. Program. Russ. Acad. Sci.), 2007, vol. 12, pp. 7–16.Google Scholar
  53. 53.
    Zhuk, S.N., On-line algorithms for packing rectangles into several strips, Discrete Math. Appl., 2007, vol. 17, no. 5, pp. 517–531.CrossRefGoogle Scholar
  54. 54.
    Zhuk, S.N., On-line algorithm for scheduling parallel tasks on a group of related clusters, Tr. Inst. Sistemnogo Program. Ross. Akad. Nauk (Proc. Inst. Syst. Program. Russ. Acad. Sci.), 2012, vol. 23, pp. 447–454. CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Ivannikov Institute for System Programming, Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia

Personalised recommendations