Advertisement

Gravitation and Cosmology

, Volume 25, Issue 2, pp 148–156 | Cite as

Unification Principle and a Cosmological Model

  • M. I. WanasEmail author
  • S. Nabil Osman
  • N. E. Abdelhamid
Article

Abstract

We present a cosmological model constructed using a pure geometric field theory. The unification principle implies defining any physical object in the model using the building blocks of the geometry used, the Absolute Parallelism (AP) geometry. The type of AP geometry used has simultaneously nonvanishing curvature and torsion. The AP geometric structure, used for this application, satisfies the cosmological principle and switches off the electromagnetic sector of the theory automatically. The model obtained is found to be free from particle horizons and flatness problems. This model can be considered as representing a transition phase between a decelerated and accelerated Universe. Conservation in the model is guaranteed by the theory used.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. J. Boya, “The thermal radiation formula of Planck,” Rev. Acad. Ciencias, Zaragoza 58, 91 (2003).MathSciNetzbMATHGoogle Scholar
  2. 2.
    A. Einstein, The Meaning of Relativity (5th ed., Princeton Univ. Press, Princeton, 1955).zbMATHGoogle Scholar
  3. 3.
    M. I. Wanas, “Parameterized absolute parallelism: a geometry for physical applications,” Turk. J. Phys. 24, 473 (2000).Google Scholar
  4. 4.
    S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Joim Wiley and Sons, 1972).Google Scholar
  5. 5.
    M. I. Wanas, S. N. Osman, and R. I. El-Kholy, “Unification principle and a geometric field theory,” Open Physics 13 (1), 247 (2015).CrossRefGoogle Scholar
  6. 6.
    F. I. Mikhail, Relativistic cosmology and some related problems in general relativity theory, PhD Thesis (University of Fondon, 1952).Google Scholar
  7. 7.
    F. I. Mikhail, “Tetrad vector fields and generalizing the theory of relativity,” Ain Shams Sci. Bull. 6, 87 (1962).Google Scholar
  8. 8.
    M. I. Wanas, “Absolute parallelism geometry: developments, applications and problems,” Stud. Cercet. Stiin. Ser. Mat. 10, 297 (2001); gr-qc/0209050.zbMATHGoogle Scholar
  9. 9.
    F. I. Mikhail and M. I. Wanas, “A generalized field theory I: field equations,” Proc. Roy. Soc. Lond. A 356, 471 (1977).MathSciNetCrossRefGoogle Scholar
  10. 10.
    M. I. Wanas, A generalized field theory and its applications in cosmology, PhD Thesis (Cairo University, 1975).Google Scholar
  11. 11.
    N. L. Youssef and A. M. Sid-Ahmed, “Linear connections and curvature tensors in the geometry of parallelizable manifolds,” Rep. Math. Phys. 60, 39 (2007); gr-qc/0604111.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    P. Dolan and W. H. McCrea, “Fundamental identities in electrodynamics and general relativity,” private communication to M. I. Wanas in 1973.Google Scholar
  13. 13.
    F. I. Mikhail and M. I. Wanas, “A generalized field theory II: linearized field equations,” Int. J. Theor. Phys. 20, 671 (1981).CrossRefGoogle Scholar
  14. 14.
    M. I. Wanas, S. A. Ammar, and S. A. Refaey, “Teleparallel gravity with non-vanishing curvature,” Can. J. Phy. 96 (12), 1373 (2018).CrossRefGoogle Scholar
  15. 15.
    F. I. Mikhail, M. I. Wanas, and A. M. Eid “Theoretical interpretation of cosmic magnetic fields,” Astrophys. Space Sci. 228, 221 (1995).CrossRefzbMATHGoogle Scholar
  16. 16.
    R. S. de Souza and Reuven Opher, “Origin of 1015U1016 G magnetic fields in the central engine of gamma ray bursts,” Cosmol. Astroparticle Phys. 2010 (2010).Google Scholar
  17. 17.
    M. I. Wanas, M. Melek, and M. E. Kahil “SN1987A: Temporal Models,” Proceedings of MG IX (World Scientific Publ.) 2, 1100 (2002); gr-qc/0306086.Google Scholar
  18. 18.
    H. P. Robertson, “Groups of motion in space admitting absolute parallelism,” Ann. Math. Princeton (2) 33, 496 (1932).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    M. I. Wanas, “Geometric structures for cosmological applications,” Astrophys. Space Sci. 127, 21 (1986).CrossRefGoogle Scholar
  20. 20.
    M. I. Wanas, “A self-consistent world model,” Astrophys. Space Sci. 154, 165 (1989).MathSciNetCrossRefGoogle Scholar
  21. 21.
    W. H. McCrea and F. I. Mikhail, “Vector-tetrads and the creation of matter,” Proc. Roy. Soc. Lond. A 235, 11 (1956).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    M. I. Wanas, N. L. Youssef, W. El. Hanfy, and S. N. Osman, “Einstein geometrization philosophy and differential identities in PAP-geometry,” Adv. Math. Phys. 2016, 1037849 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    A. H. Guth, “Inflationary universe: A possible solution to the horizon and flatness problems,” Phys. Rev. D 23, 347 (1981).CrossRefzbMATHGoogle Scholar
  24. 24.
    A. D. Linde, “A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems,” Phys. Lett. B 108, 389 (1982).CrossRefGoogle Scholar
  25. 25.
    R. M. Wald, General Relativity (Univ. of Chicago Press, 1984).CrossRefzbMATHGoogle Scholar
  26. 26.
    M. I. Wanas and H. A. Hassan, “Torsion and particle horizons,” Int. J. Theor. Phys. 53, 3901 (2014).CrossRefzbMATHGoogle Scholar
  27. 27.
    J. W. Maluf, “The teleparallel equivalent of general relativity,” Ann. der Physik 525, 339 (2013); arXiv: 1303.3897.MathSciNetCrossRefGoogle Scholar
  28. 28.
    R. Ferraro and F. Fiorini, “Modified teleparallel gravity: inflation without inflation,” Phys. Rev. D 75, 084031 (2007); gr-qc/0610067.MathSciNetCrossRefGoogle Scholar
  29. 29.
    R. Ferraro and F. Fiorini, “On Born-Infeld gravity in Weitezenböck spacetime,” Phys. Rev. D 78, 124019 (2008); arXiv: 0812.1981.MathSciNetCrossRefGoogle Scholar
  30. 30.
    G. L. Nashed, “FRW in quadratic form of f(T) gravitational theories,” Gen. Rel. Grav. 47, 75 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    G. L. Nashed, “Regularization of f(T) gravity theories and local Lorentz transformation,” Adv. High Energy Phys. 2015, 680457 (2015).MathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. I. Wanas
    • 1
    • 2
    Email author
  • S. Nabil Osman
    • 1
    • 2
  • N. E. Abdelhamid
    • 3
    • 2
  1. 1.Department of Astronomy, Faculty of ScienceCairo UniversityGizaEgypt
  2. 2.Egyptian Relativity Group (ERG)GizaEgypt
  3. 3.National Research Institute of Astronomy and Geophysics (NRIAG)CairoEgypt

Personalised recommendations