Advertisement

Gravitation and Cosmology

, Volume 25, Issue 2, pp 103–115 | Cite as

Review on Dark Energy Models

  • Abdel Nasser TawfikEmail author
  • Eiman Abou El Dahab
Article
  • 25 Downloads

Abstract

Based on quantum mechanics and general relativity, Karolyhazy proposed a generalization to the well-known Heisenberg uncertainty relation in which the energy density of quantum fluctuations of space-time plays a crucial role. Later on, various holographic DE models were suggested, in which the Hubble scale (size) and the age of the universe were assumed as measures for the largest infrared cutoff satisfying the holographic principle and energy bounds assuring applicability of quantum field theory. We review various models based on the holographic principle and the Karolyhazy relation and compare these to the space-time foam and superconducting DE models. We analyze their (in)stability against cosmological perturbation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

AT is very grateful to Tibeiu Harko for the stimulating discussions on the (in)stability of the holographic and agegraphic DE models and proposing to compare them with superconducting DE models.

References

  1. 1.
    Geoff Brumfiel, Nature 448, 245 (2007).CrossRefADSGoogle Scholar
  2. 2.
    S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).CrossRefADSGoogle Scholar
  3. 3.
    A. G. Riess, et al., [Supernova search team collaboration], Astron. J. 116, 1009 (1998); S. Perlmutter, et al. [Supernova cosmology project collaboration], Astroph. J. 517, 565 (1999).CrossRefADSGoogle Scholar
  4. 4.
    J. D. Barrow and D. J. Shaw, Gen. Rel. Grav. 43, 2555 (2011).CrossRefADSGoogle Scholar
  5. 5.
    S. M. Carroll, W. H. Press, and E. L. Turner, Ann. Rev. Astron. Astrophys. 30, 499–542 (1992).CrossRefADSGoogle Scholar
  6. 6.
    N. Aghanim et al. (Planck Collaboration), “Planck 2018 results. VI. Cosmological parameters,” arXiv: 1807.06209Google Scholar
  7. 7.
    Adam G. Riess et al., Astron. J. 116, 1009–1038 (1998).CrossRefADSGoogle Scholar
  8. 8.
    B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016).MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    L. A. Somlai and M. Vasuth, Int. J. Mod. Phys. D 27, 1850004 (2017); arXiv: 1606.09465.CrossRefGoogle Scholar
  10. 10.
    A. Ashtekar, B. Bonga, and A. Kesavan, Phys. Rev. Lett. 116, 051101 (2016).CrossRefADSGoogle Scholar
  11. 11.
    A. Ashtekar, Phys. Rev. Lett. 57, 2244 (1986).MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Simon D. M. White, Rep. Prog. Phys. 70, 883 (2007); arXiv: 0704.2291.CrossRefADSGoogle Scholar
  13. 13.
    I. Shipsey et al., “’Particle Physics and Astrophysics—A whitepaper in response to a call to the Astronomy and Astrophysics Community from the Committee on Astro2010 for State of the Profession Position Papers”, arXiv: 0904.0595.Google Scholar
  14. 14.
    C. L. Bennett, et al., Astrophys. J. Suppl. 148, 1 (2003); D. N. Spergel, et al., Astrophys. J. Suppl.148, 175 (2003); H. V. P. Peiris, et al., Astrophys. J. Suppl. 148, 213 (2003).CrossRefADSGoogle Scholar
  15. 15.
    P. Horava and D. Minic, Phys. Rev. Lett. 161085 (2000).Google Scholar
  16. 16.
    T. Abbott, et al. (DES Collaboration), MNRAS 460, 1270 (2016); arXiv: 1601.00329.CrossRefADSGoogle Scholar
  17. 17.
    Shuang Wang, Yi Wang, and Miao Li, Phys. Rep. 696, 1 (2017); arXiv: 1612.00345.MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998).CrossRefADSGoogle Scholar
  19. 19.
    C. Wetterich, Nucl. Phys. B 302, 668 (1988).CrossRefADSGoogle Scholar
  20. 20.
    P. J. E. Peebles and B. Ratra, Astrophys. J. 325, L17 (1988).CrossRefADSGoogle Scholar
  21. 21.
    B. Ratra and P. J. E. Peebles, Phys. Rev. D 37, 3406 (1988).CrossRefADSGoogle Scholar
  22. 22.
    P. J. Steinhardt, L. M. Wang, and I. Zlatev, Phys. Rev. D 59, 123504 (1999).CrossRefADSGoogle Scholar
  23. 23.
    I. Zlatev and P. J. Steinhardt, Phys. Lett. B 459, 570 (1999).CrossRefADSGoogle Scholar
  24. 24.
    R. R. Caldwell, Phys. Lett. B 545, 23 (2002).CrossRefADSGoogle Scholar
  25. 25.
    R. R. Caldwell, M. Kamionkowski, and N. N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003).CrossRefADSGoogle Scholar
  26. 26.
    S. M. Carroll, M. Hoffman, and M. Trodden, Phys. Rev. D 68, 023509 (2003).CrossRefADSGoogle Scholar
  27. 27.
    J. M. Cline, S. Y. Jeon, and G. D. Moore, Phys. Rev. D 70, 043543 (2004).CrossRefADSGoogle Scholar
  28. 28.
    C. Armendariz-Picon, V. Mukhanov, and P. J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000); Phys. Rev. D 63, 103510 (2001).CrossRefADSGoogle Scholar
  29. 29.
    T. Chiba, T. Okabe, and M. Yamaguchi, Phys. Rev. D 62, 023511 (2000).CrossRefADSGoogle Scholar
  30. 30.
    M. Malquarti, E. J. Copeland, and A. R. Liddle, Phys. Rev. D 68, 023512 (2003).CrossRefADSGoogle Scholar
  31. 31.
    M. Malquarti, E. J. Copeland, A. R. Liddle, and M. Trodden, Phys. Rev. D 67, 123503 (2003).MathSciNetCrossRefADSGoogle Scholar
  32. 32.
    H. Wei and R. G. Cai, Phys. Rev. D 71, 043504 (2005).CrossRefADSGoogle Scholar
  33. 33.
    B. Feng, X. L. Wang, and X. M. Zhang, Phys. Lett. B 607, 35 (2005).CrossRefADSGoogle Scholar
  34. 34.
    Z. K. Guo, Y. S. Piao, X. M. Zhang, and Y. Z. Zhang, Phys. Lett. B 608, 177 (2005).CrossRefADSGoogle Scholar
  35. 35.
    H. Wei and R. G. Cai, Phys. Lett. B 634, 9 (2006).CrossRefADSGoogle Scholar
  36. 36.
    Z. K. Guo, Y. S. Piao, X. M. Zhang, and Y. Z. Zhang, Phys. Rev. D 74, 127304 (2006).CrossRefADSGoogle Scholar
  37. 37.
    X. F. Zhang, H. Li, Y. S. Piao, and X. M. Zhang, Mod. Phys. Lett. A 21, 231 (2006).CrossRefADSGoogle Scholar
  38. 38.
    M. Z. Li, B. Feng, and X. M. Zhang, J. Cosmol. Astropart. Phys. 12, 002 (2005).CrossRefADSGoogle Scholar
  39. 39.
    X. F. Zhang and T. T. Qiu, Phys. Lett. B 642, 187 (2006).CrossRefADSGoogle Scholar
  40. 40.
    Y. F. Cai, H. Li, Y. S. Piao, and X. M. Zhang, Phys. Lett. B 646, 141 (2007).MathSciNetCrossRefADSGoogle Scholar
  41. 41.
    Y. F. Cai, M. Z. Li, J. X. Lu, Y. S. Piao, T. T. Qiu, and X. M. Zhang, Phys. Lett. B 651, 1 (2007).MathSciNetCrossRefADSGoogle Scholar
  42. 42.
    R. Lazkoz and G. Leon, Phys. Lett. B 638, 303 (2006).CrossRefADSGoogle Scholar
  43. 43.
    R. Lazkoz, G. Leon, and I. Quiros, Phys. Lett. B 649, 103 (2007).MathSciNetCrossRefADSGoogle Scholar
  44. 44.
    H. Wei, R. G. Cai, and D. F. Zeng, Class. Quantum Grav. 22, 3189 (2005).CrossRefADSGoogle Scholar
  45. 45.
    H. Wei and R. G. Cai, Phys. Rev. D 72, 123507 (2005).CrossRefADSGoogle Scholar
  46. 46.
    M. Alimohammadi and H. Mohseni Sadjadi, Phys. Rev. D 73, 083527 (2006).CrossRefADSGoogle Scholar
  47. 47.
    W. Zhao and Y. Zhang, Phys. Rev. D 73, 123509 (2006).CrossRefADSGoogle Scholar
  48. 48.
    H. Wei, N. N. Tang, and S. N. Zhang, Phys. Rev. D 75, 043009 (2007).CrossRefADSGoogle Scholar
  49. 49.
    A. Sen, JHEP 0207, 065 (2002); hep-th/0203265.CrossRefADSGoogle Scholar
  50. 50.
    T. Padmanabhan, Phys. Rev. D 66, 021301 (2002); hep-th/0204150.CrossRefADSGoogle Scholar
  51. 51.
    J. Zhang, X. Zhang, and H. Liu, Phys. Lett. B 651, 84 (2007); arXiv: 0706.1185.MathSciNetCrossRefADSGoogle Scholar
  52. 52.
    N. Arkani-Hamed, H. C. Cheng, M. A. Luty, and S. Mukohyama, JHEP 0405, 074 (2004); hep-th/0312099.CrossRefADSGoogle Scholar
  53. 53.
    F. Piazza and S. Tsujikawa, JCAP 0407, 004 (2004); hep-th/0405054.CrossRefADSGoogle Scholar
  54. 54.
    X. Zhang, Phys. Rev. D 74, 103505 (2006); astro-ph/0609699.CrossRefADSGoogle Scholar
  55. 55.
    J. Zhang, X. Zhang, and H. Liu, Mod. Phys. Lett. A 23, 139 (2008); astro-ph/0612642.CrossRefADSGoogle Scholar
  56. 56.
    X. Zhang, Phys. Rev. D 79, 103509 (2009); arXiv: 0901.2262.CrossRefADSGoogle Scholar
  57. 57.
    G. t Hooft, Salamfest 0284–296 (1993); gr-qc/9310026.Google Scholar
  58. 58.
    L. Susskind, J. Math. Phys. (N.Y.) 36, 6377 (1995).CrossRefADSGoogle Scholar
  59. 59.
    R. Bousso, Rev. Mod. Phys. 74, 825 (2002).CrossRefADSGoogle Scholar
  60. 60.
    J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973); J. D. Bekenstein, Phys. Rev. D 9, 3292 (1974); J. D. Bekenstein, Phys. Rev. D 23, 287 (1981); J. D. Bekenstein, Phys. Rev. D 49, 1912 (1994).MathSciNetCrossRefADSGoogle Scholar
  61. 61.
    S. W. Hawking, Commun. Math. Phys. 43, 199 (1975); S. W. Hawking, Commun. Math. Phys. 46, 206 (1976); S. W. Hawking, Phys. Rev. D 13, 191 (1976).CrossRefADSGoogle Scholar
  62. 62.
    A. N. Tawfik and A. M. Diab, Int. J. Mod. Phys. A 30, 1550059 (2015); arXiv: 1502.04562.CrossRefGoogle Scholar
  63. 63.
    A. N. Tawfik and E. A. El Dahab, Int. J. Mod. Phys. A 30, 1550030 (2015); arXiv: 1501.01286.CrossRefADSGoogle Scholar
  64. 64.
    A. G. Cohen, D. B. Kaplan, and A. E. Nelson, Phys. Rev. Lett. 82, 4971 (1999).MathSciNetCrossRefADSGoogle Scholar
  65. 65.
    M. Li, Phys. Lett. B 603, 1 (2004).CrossRefADSGoogle Scholar
  66. 66.
    S. D. H. Hsu, Phys. Lett. B 594, 13 (2004).CrossRefADSGoogle Scholar
  67. 67.
    W. McCrea, Proc. Roy. Soc. A 206, 562 (1951).CrossRefADSGoogle Scholar
  68. 68.
    A. F. Ali and A. Tawfik, Adv. High Energy Phys. 2013, 126528 (2013); arXiv: 1301.3508 [gr-qc]Google Scholar
  69. 69.
    S. Thomas, Phys. Rev. Lett. 89, 081301 (2002).MathSciNetCrossRefADSGoogle Scholar
  70. 70.
    R.-G. Cai, Phys. Lett. B 657, 228 (2007).MathSciNetCrossRefADSGoogle Scholar
  71. 71.
    Michael Maziashvili, Phys. Lett. B 652, 165 (2007); arXiv: 0705.0924.CrossRefADSGoogle Scholar
  72. 72.
    F. Karolyhazy, Nuovo Cim. A 42, 390 (1966).CrossRefADSGoogle Scholar
  73. 73.
    N. Sasakura, Prog. Theor. Phys. 02, 169 (1999); hep-th/9903146.CrossRefADSGoogle Scholar
  74. 74.
    Y. J. Ng and H. Van Dam, Mod. Phys. Lett. A 9, 335 (1994).CrossRefADSGoogle Scholar
  75. 75.
    W. A. Christiansen, Y. J. Ng, and H. van Dam, Phys. Rev. Lett. 96, 051301 (2006); gr-qc/0508121.MathSciNetCrossRefADSGoogle Scholar
  76. 76.
    M. Arzano, T. W. Kephart, Y J. Ng, Phys. Lett. B 649, 243 (2007).MathSciNetCrossRefADSGoogle Scholar
  77. 77.
    A. N. Tawfik and A. M. Diab, Int. J. Mod. Phys. D 23, 1430025 (2014); arXiv: 1410.0206.CrossRefADSGoogle Scholar
  78. 78.
    A. N. Tawfik and A. M. Diab, Rep. Prog. Phys. 78, 126001 (2015); arXiv: 1509.02436.CrossRefADSGoogle Scholar
  79. 79.
    Xavier Calmet, Eur. Phys. J. C 54, 501 (2008); hep-th/0701073.CrossRefADSGoogle Scholar
  80. 80.
    A. Tawfik, JCAP 1307, 040 (2013); arXiv: 1307.1894 [gr-qc]CrossRefADSGoogle Scholar
  81. 81.
    M. Maziashvili, Int. J. Mod. Phys. D 16, 1531 (2007).MathSciNetCrossRefADSGoogle Scholar
  82. 82.
    H. Wei and R.-G. Cai, Phys. Lett. B 660, 113 (2008).CrossRefADSGoogle Scholar
  83. 83.
    N. Margolus and L. B. Levitin, Physica D 120, 188 (1998).CrossRefADSGoogle Scholar
  84. 84.
    Y. Jack Ng, Entropy 10, 441 (2008).MathSciNetCrossRefGoogle Scholar
  85. 85.
    Y. X. Chen and Y. Xiao, Phys. Lett. B 666, 371 (2008); arXiv: 0712.3119..MathSciNetCrossRefADSGoogle Scholar
  86. 86.
    Y.J. Ng, Phys. Rev. Lett. 86, 2946 (2001).MathSciNetCrossRefADSGoogle Scholar
  87. 87.
    Yun Soo Myung and Min-Gyun Seo, Phys. Lett. B 671, 435 (2009).CrossRefADSGoogle Scholar
  88. 88.
    S. D. Liang and T. Harko, Phys. Rev. D 91, 085042 (2015).CrossRefADSGoogle Scholar
  89. 89.
    A. N. Tawfik and H. Magdy, Int. J. Mod. Phys. A 29, 1450152 (2014); arXiv: 1206.0901.CrossRefGoogle Scholar
  90. 90.
    A. N. Tawfik, A. M. Diab, and M. T. Hussein, J. Phys. G 45, 055008 (2018); arXiv: 1604.08174.CrossRefADSGoogle Scholar
  91. 91.
    S. D. Hsu, Phys. Lett. B 594, 13 (2004); hep-th/0403052.CrossRefADSGoogle Scholar
  92. 92.
    R. Horvat, Phys. Rev. D 70, 087301 (2004); astro-ph/0404204.MathSciNetCrossRefADSGoogle Scholar
  93. 93.
    Y. S. Myung, Phys. Lett. B 652, 223 (2007).MathSciNetCrossRefADSGoogle Scholar
  94. 94.
    V. Sahni, T. D. Saini, A. A. Starobinsky, and U. Alam, JETP Lett. 77, 201 (2003).CrossRefADSGoogle Scholar
  95. 95.
    X. Zhang, Int. J. Mod. Phys. D 14, 1597 (2005); astro-ph/0504586.CrossRefADSGoogle Scholar
  96. 96.
    M. R. Setare, J. Zhang, and X. Zhang, JCAP 0703, 007 (2007); gr-qc/0611084.CrossRefADSGoogle Scholar
  97. 97.
    A. N. Tawfik, A. M. Diab, E. A. El Dahab, and T. Harko, Phys. Rev. D 93, 063526 (2016); 1603.03032.MathSciNetCrossRefADSGoogle Scholar
  98. 98.
    K.Y. Kim, H. W. Lee, and Y.S. Myung, Phys. Lett. B 660, 118 (2008).CrossRefADSGoogle Scholar
  99. 99.
    A. Pasqua, S. Chattopadhyay, and I. Khomenko, Int. J. Theor. Phys. 52, 2496 (2013).CrossRefGoogle Scholar
  100. 100.
    V. Fayaz, Astrophys. Space Sci. 361, 86 (2016).MathSciNetCrossRefADSGoogle Scholar
  101. 101.
    S. W. Hawking, Phys. Rev. D 52, 5681 (1995).MathSciNetCrossRefADSGoogle Scholar
  102. 102.
    Luis J. Garay, Phys. Rev. D 58, 124015 (1998).MathSciNetCrossRefADSGoogle Scholar
  103. 103.
    S. W. Hawking, Phys. Rev. D 46, 603 (1992).MathSciNetCrossRefADSGoogle Scholar
  104. 104.
    Li-Xin Li and J. R. Gott III, Phys. Rev. Lett. 80, 2980 (1998).CrossRefADSGoogle Scholar
  105. 105.
    Ian H. Redmount and Wai-Mo Suen, Phys. Rev. D 47 R2163–R2167 (1993); gr-qc/9210017.CrossRefADSGoogle Scholar
  106. 106.
    Z. Keresztes, L. A. Gergely, T. Harko, and Shi-Dong Liang, Phys. Rev. D 92, 123503 (2015).CrossRefADSGoogle Scholar
  107. 107.
    A. Golovnev and A. Klementev, JCAP 02, 033 (2014).CrossRefADSGoogle Scholar
  108. 108.
    B. Himmetoglu, C. R. Contaldi, and M. Peloso, Phys. Rev. Lett. 102, 111301 (2009); B. Himmetoglu, C. R. Contaldi, and M. Peloso, Phys. Rev. D 80, 123530 (2009).CrossRefADSGoogle Scholar
  109. 109.
    A. Golovnev, Phys. Rev. D 81, 023514 (2010).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Nile UniversityGizaEgypt
  2. 2.Frankfurt Institute for Advanced StudiesFrankfurtGermany
  3. 3.World Laboratory for Cosmology And Particle Physics (WLCAPP)CairoEgypt
  4. 4.Faculty of Computers and InformationModern University for Technology and Information (MTI)CairoEgypt

Personalised recommendations