Advertisement

Gravitation and Cosmology

, Volume 25, Issue 2, pp 196–204 | Cite as

Particle Acceleration in Rotating Modified Hayward and Bardeen Black Holes

  • Behnam PourhassanEmail author
  • Ujjal Debnath
Article
  • 2 Downloads

Abstract

We consider a rotating modified Hayward black hole and construct a rotating modified Bardeen black hole to study particle acceleration of two colliding particles near the horizon. These classes of black holes have new and important parameters with mass dimension, which made crucial differences with the Kerr black hole. We investigate the CM energy of two colliding neutral particles with the same rest masses falling from rest at infinit to near the horizons of the mentioned black holes. We confirm that rotational motion of these black holes is necessary to have infinite CM energy for collision of two particles near the horizon. We also investigate the range of the particles’ angular momentum and the orbit of the particle, hence find an infinite region for the case of rotating modified Bardeen black hole and a finite region for the case of a modified Hayward black hole.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

One of the authors (UD) is thankful to IUCAA, Pune, India for warm hospitality where part of the work was carried out.

References

  1. 1.
    M. Banados, J. Silk, and S. M. West, Phys. Rev. Lett. 103, 111102 (2009).CrossRefGoogle Scholar
  2. 2.
    K. Lake, Phys. Rev. Lett. 104, 211102 (2010).CrossRefGoogle Scholar
  3. 3.
    K. Lake, Phys. Rev. Lett. 104, 259903 (2010).CrossRefGoogle Scholar
  4. 4.
    T. Harada and M. Kimura, Class. Quantum Grav. 31, 243001_ (2014).CrossRefGoogle Scholar
  5. 5.
    S. W. Wei, Y. X. Liu, H. Guo, and C.-E. Fu, Phys. Rev. D 82, 103005 (2010).CrossRefGoogle Scholar
  6. 6.
    C. Liu, S. Chen, C. Ding, and J. Jing, Phys. Lett. B 701, 285 (2011).MathSciNetCrossRefGoogle Scholar
  7. 7.
    A. Zakria and M. Jamil, JHEP 1505, 147 (2015).CrossRefGoogle Scholar
  8. 8.
    E. Berti, V. Cardoso, L. Gualtieri, F. Pretorius, and U. Sperhake, Phys. Rev. Lett. 103, 239001 (2009).CrossRefGoogle Scholar
  9. 9.
    T. Jacobson and T. P. Sotiriou, Phys. Rev. Lett. 104, 021101 (2010).CrossRefGoogle Scholar
  10. 10.
    O. B. Zaslavskii, JETP Lett. 92, 571 (2010).CrossRefGoogle Scholar
  11. 11.
    T. Igata, T. Harada, and M. Kimura, Phys. Rev. D 85, 104028 (2012).CrossRefGoogle Scholar
  12. 12.
    M. Banados, B. Hassanain, J. Silk, and S. M. West, Phys. Rev. D 83, 023004 (2011).CrossRefGoogle Scholar
  13. 13.
    I. Hussain, Mod. Phys. Lett. A 27, 1250017 (2012).CrossRefGoogle Scholar
  14. 14.
    A. A. Grib and Yu. V. Pavlov, Astropart. Phys. 34, 581 (2011).CrossRefGoogle Scholar
  15. 15.
    A. A. Grib and Yu. V. Pavlov, Grav. Cosmol. 17, 42 (2011).CrossRefGoogle Scholar
  16. 16.
    T. Harada and M. Kimura, Phys. Rev. D 83, 024002 (2011).CrossRefGoogle Scholar
  17. 17.
    M. Sharif and N. Haider, Astrophys. Space Sci. 346, 111 (2013).CrossRefGoogle Scholar
  18. 18.
    S. W. Wei, Y. X. Liu, H. T. Li, and F. W. Chen, JHEP 12, 066 (2010).CrossRefGoogle Scholar
  19. 19.
    S. G. Ghosh, P. Sheoran, and M. Amir, Phys. Rev. D 90, 103006 (2014).CrossRefGoogle Scholar
  20. 20.
    J. Sadeghi and B. Pourhassan, Eur. Phys. J. C. 72, 1984 (2012).CrossRefGoogle Scholar
  21. 21.
    J. Sadeghi, B. Pourhassan, and H. Farahani, Commun. Theor. Phys. 62, 358 (2014).CrossRefGoogle Scholar
  22. 22.
    S. G. Ghosh, Eur. Phys. J. C 75, 532 (2015).CrossRefGoogle Scholar
  23. 23.
    M. Patil and P. S. Joshi, Phys. Rev. D 82, 104049 (2010).CrossRefGoogle Scholar
  24. 24.
    M. Patil, P. S. Joshi, and D. Malafarina, Phys. Rev. D 83, 064007 (2011).CrossRefGoogle Scholar
  25. 25.
    M. Patil and P. S. Joshi, Class. Quantum Grav. 28, 235012 (2011).CrossRefGoogle Scholar
  26. 26.
    M. Patil, P. S. Joshi, M. Kimura, and K. I. Nakao, Phys. Rev. D 86, 084023 (2012).CrossRefGoogle Scholar
  27. 27.
    J. Bardeen, in: Proceedings of GR5 (Tbilisi, 1968).Google Scholar
  28. 28.
    S. A. Hayward, Phys. Rev. Lett. 96, 031103 (2006).CrossRefGoogle Scholar
  29. 29.
    E. Ayon-Beato and A. Garcia, Phys. Rev. Lett. 80, 5056 (1998).CrossRefGoogle Scholar
  30. 30.
    Kirill A. Bronnikov, Phys. Rev. D 63, 044005 (2001)MathSciNetCrossRefGoogle Scholar
  31. 31.
    G. Abbas and U. Sabiullah, Astrophys. Space Sci. 352, 769 (2014).CrossRefGoogle Scholar
  32. 32.
    C. Bambi and L. Modesto, Phys. Lett. B 721, 329 (2013).MathSciNetCrossRefGoogle Scholar
  33. 33.
    T. De Lorenzo, C. Pacilioy, C. Rovelli, and S. Speziale, Gen. Rel. Grav. 47, 41 (2015).CrossRefGoogle Scholar
  34. 34.
    M. Amir and S. G. Ghosh, JHEP 1507, 015 (2015).CrossRefGoogle Scholar
  35. 35.
    P. Pradhan, arXiv:1402.2748 [gr-qc].Google Scholar
  36. 36.
    N. Haider, Open J.Mod. Phys. 1, 1 (2014).CrossRefGoogle Scholar
  37. 37.
    U. Debnath, EPJC 75, 129 (2015).CrossRefGoogle Scholar
  38. 38.
    O. B. Zaslavskii, Phys. Rev. D 82, 083004 (2010).CrossRefGoogle Scholar
  39. 39.
    C. A. R. Herdeiro, Class. Quantum Grav. 20, 4891 (2003).CrossRefGoogle Scholar
  40. 40.
    A. Pourdarvish et al., Int. J. Theor. Phys. 52, 3560 (2013).MathSciNetCrossRefGoogle Scholar
  41. 41.
    A. Pourdarvish et al., Int. J. Theor. Phy. 53, 3101 (2014).MathSciNetCrossRefGoogle Scholar
  42. 42.
    Robert C. Myers, Phys. Rev. D 50, 6412 (1994).MathSciNetCrossRefGoogle Scholar
  43. 43.
    J. Sadeghi et al., Eur. Phys. J. C 53, 95 (2008).CrossRefGoogle Scholar
  44. 44.
    J. Sadeghi, M. R Setare, and B. Pourhassan, Acta Phys. Pol. B 40, 251 (2009).Google Scholar
  45. 45.
    J. Sadeghi, B. Pourhassan, and F. Pourasadollah, Phys. Lett. B 720, 244 (2013).MathSciNetCrossRefGoogle Scholar
  46. 46.
    J. Sadeghi, B. Pourhassan, and A. Asadi, Eur. Phys. J. C 74, 2680 (2014).CrossRefGoogle Scholar
  47. 47.
    S. Kachru, X. Liu, and M. Mulligan, Phys. Rev.D 78, 106005 (2008).MathSciNetCrossRefGoogle Scholar
  48. 48.
    J. Sadeghi, B. Pourhassan, and A. Asadi, Can. J. Phys. 92, 280 (2014).CrossRefGoogle Scholar
  49. 49.
    M. Cadoni and S. Mignemi, JHEP 1206, 056 (2012).CrossRefGoogle Scholar
  50. 50.
    Robert C. Myers, “Myers-Perry black holes,” arXiv: 1111.1903.Google Scholar
  51. 51.
    A. Pourdarvish and B. Pourhassan, Int. J. Theor. Phys. 53, 136 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.School of PhysicsDamghan UniversityDamghanIran
  2. 2.Department of MathematicsIndian Institute of Engineering Science and TechnologyShibpur, HowrahIndia

Personalised recommendations