Advertisement

Gravitation and Cosmology

, Volume 25, Issue 2, pp 172–178 | Cite as

Hyperbolic Potential with Original Chaplygin Gas in Braneworld Inflation

  • I. Khay
  • F. Salamate
  • A. SafsafiEmail author
  • H. Chakir
  • M. Bennai
Article
  • 2 Downloads

Abstract

We study the original Chaplygin gas model in the context of Randall-Sundrum type-II braneworld with a hyperbolic potential. We consider the Chaplygin gas as a candidate for inflation by using the latest data release from Planck 2015. We found that the various inflationary spectrum parameters ns, r and \(\frac{dn_{s}}{d\;\text{ln}\;k}\) depend only on the number of e-folds. The compatibility of these parameters with the last measurement of Planck is realized with large values of N. In this context, a suitable observational central value of ns = 0.965 is obtained in the case of the original Chaplygin gas and a hyperbolic potential.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Linde, “Inflationary cosmology after Planck” 2013, arXiv: 1402.0526.zbMATHGoogle Scholar
  2. 2.
    P. Ishwaree. Neupane, Phys. Rev. D 90, 123502 (2014).CrossRefGoogle Scholar
  3. 3.
    H. Guth. Phys. Rev. D 23, 347 (1981).CrossRefGoogle Scholar
  4. 4.
    A. Jawad, S. Chaudhary, and N. Videla, Eur. Phys. J. C 77, 11808 (2017).Google Scholar
  5. 5.
    M. C. Bento, O. Bertolami, and A. Sen, Phys.Lett. B 575, 172 (2003).CrossRefGoogle Scholar
  6. 6.
    P. Binetruy, C. Deffayet, and D. Langlois, Nucl. Phys. B 565, 269 (2000).CrossRefGoogle Scholar
  7. 7.
    R. Kallosh and A. Linde, “Dark energy and fate of the Universe,” JCAP 0302 (2003).Google Scholar
  8. 8.
    A. Liddle and D. Lyth, (Cambridge: Cambridge University Press, 2000).Google Scholar
  9. 9.
    P. Brax, C. Bruck, and A. Davis, Phys. 67, 2183–2232 (2004).Google Scholar
  10. 10.
    A. Al Mamon and S. Das, arXiv: 1503.06280.Google Scholar
  11. 11.
    S. Del Campo, R. Herrera, G. Olivares, and D. Pavón, Phys. Rev. D 74, 023501 (2006).CrossRefGoogle Scholar
  12. 12.
    M. Jamil, Int. J.Theor. Phys. 49, 62 (2010).CrossRefGoogle Scholar
  13. 13.
    S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).CrossRefGoogle Scholar
  14. 14.
    L. McAllister and E. Silverstein, Gen. Rel. Grav. 40, 565 (2008); arXiv: 0710.2951.CrossRefGoogle Scholar
  15. 15.
    R. J. Scherrer, Phys. Rev. Lett. 93, 011301 (2004).CrossRefGoogle Scholar
  16. 16.
    M. Li, Phys. Lett. B 603, 1 (2004).CrossRefGoogle Scholar
  17. 17.
    J. M. Cline, S. Jeon, and G. D. Moore, Phys. Rev. D 70, 043543 (2004).CrossRefGoogle Scholar
  18. 18.
    D. Panigrahi and S. Chatterjee, Int. J. Mod. Phys. D 21, 1250079 (2012).CrossRefGoogle Scholar
  19. 19.
    Chaplygin. Sci. Mem. Moscow Univ. Math. Phys. 21, 1–121 (1904).Google Scholar
  20. 20.
    A. Y. Kamenshchik, U. Moschella, and V. Pasquier, “An alternative to quintessence,” Phys. Lett. B 511, 265 (2001).CrossRefzbMATHGoogle Scholar
  21. 21.
    N. Bilic, G. B. Tupper, and R. D. Viollier, Phys. Lett. B 535, 17 (2002).CrossRefGoogle Scholar
  22. 22.
    R. Bean and O. Dore, Phys. Rev. D 68, 023515 (2003).CrossRefGoogle Scholar
  23. 23.
    M. R. Setare. Phys. Lett. B 654, 1 (2007).CrossRefGoogle Scholar
  24. 24.
    A. Dev, J. S. Alcaniz, and D. Jain, Phys. Rev. D 67, 023515 (2003).CrossRefGoogle Scholar
  25. 25.
    R. Herrera, “Chaplygin inflation on the brane,” Phys. Lett. B 664, 149 (2008).CrossRefGoogle Scholar
  26. 26.
    R. Herrera, Gen. Rel. Grav. 41, 1259 (2008).CrossRefGoogle Scholar
  27. 27.
    D. Langlois, R. Maartens, and D. Wands, Phys. Lett. B 489, 259 (2000).MathSciNetCrossRefGoogle Scholar
  28. 28.
    R. Zarrouki and M. Bennai, Phys. Rev. D 82, 123506 (2010).CrossRefGoogle Scholar
  29. 29.
    Planck Collaboration, Astron. Astroph. 594, A13 (2015).Google Scholar
  30. 30.
    L. Randall and R. Sundrum. Phys. Rev. Lett. 83, 3370 1999); L. Randall and R. Sundrum. Phys. Rev. Lett. 83, 4690 (1999).MathSciNetCrossRefGoogle Scholar
  31. 31.
    R. Maartens, D. Wands, B. Basset, and I. Heard. Phys. Rev. D 62, 041301 (2000).CrossRefGoogle Scholar
  32. 32.
    O. Bertolami and V. Duvvuri. Phys. Lett. B 640, 121 (2006).CrossRefGoogle Scholar
  33. 33.
    S. Basilakos and J. D. Barrow. Phys. Rev. D 91, 103517 (2015).CrossRefGoogle Scholar
  34. 34.
    Z. Mounzi, M. Ferricha-Alami, A. Safsafi, and M. Bennai, Grav. Cosmol. 23, 84 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. Khay
    • 1
    • 2
  • F. Salamate
    • 1
    • 2
  • A. Safsafi
    • 1
    • 2
    • 3
    Email author
  • H. Chakir
    • 1
    • 2
    • 3
  • M. Bennai
    • 1
    • 3
  1. 1.Equipe Physique Quantique et Applications, Laboratoire de Physique de la Matiere Condensee, Faculte des Sciences Ben M’sikUniversite Hassan IICasablancaMaroc
  2. 2.Equipe de Recherche Subatomique et Applications Laboratoire de Physique de la Matière Condensée, Faculté des Sciences Ben M’sikUniversité Hassan IICasablancaMaroc
  3. 3.Groupement National de Physique des Hautes Energies, Focal pointLabUFR-PHERabatMaroc

Personalised recommendations