Gravitation and Cosmology

, Volume 25, Issue 2, pp 131–137 | Cite as

A Cosmological Solution with Acceleration Caused by an Annihilation Shock Wave

  • A. N. Golubiatnikov
  • D. B. LyuboshitsEmail author


A discontinuous spherically symmetric solution of the Einstein equations is found, containing an annihilation shock wave. Before the shock wave, there occurs a parabolic (with zero speed at infinity) compression of dust consisting of particles and antiparticles, which is glued on the wave of complete annihilation of antiparticles with hyperbolic expansion of a gas with an extremely stiff equation of state. Specifically, in contrast to the Friedmann homogeneous expansion. the solution behind the shock wave has a nonzero pressure gradient associated with acceleration of the continuum. Estimates are given for the parameters related to the stage of baryon-antibaryon annihilation at formation of the Universe.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. Riess et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J. 116, 1009–1038 (1998).CrossRefGoogle Scholar
  2. 2.
    M. Cahill and A. Taub, “Spherically symmetric similarity solutions of the Einstein field equations for a perfect fluid,” Commun. Math. Phys. 21, 1–40 (1971).MathSciNetCrossRefGoogle Scholar
  3. 3.
    A. D. Dolgov, M. V. Sazhin, and Ya. B. Zel’dovich, Basics of Modern Cosmology (Editions Frontieres, Gifsur-Yvette, France, 1990).Google Scholar
  4. 4.
    A. N. Golubyatnikov, “On spherically symmetric motion of a relativistic gravitating gas in the presence of a strong shock wave,” Sov. Phys. Doklady 22, 122–124 (1977).Google Scholar
  5. 5.
    A. N. Golubyatnikov, “Strong explosion and reorganization of the equilibrium configuration during relativistic gravitational collapse,” Sov. Phys. Doklady 25, 245–247 (1980).zbMATHGoogle Scholar
  6. 6.
    A. N. Golubiatnikov, “On the formation of homogeneous expansion of a relativistic gravitating gas,” Grav. Cosmol. 5 (4), 329–332 (1999).MathSciNetzbMATHGoogle Scholar
  7. 7.
    A. N. Golubiatnikov and D. B. Lyuboshits, “Annihilation shock wave in the dynamics of gravitating gas,” Grav. Cosmol. 24 (4), 309–314 (2018).CrossRefGoogle Scholar
  8. 8.
    A. N. Golubyatnikov, “Uniform expansion of a gravitating gas in the presence of a pressure gradient,” Fluid Dynamics 33 (4), 612–617 (1998).CrossRefzbMATHGoogle Scholar
  9. 9.
    G. G. Chorniy, Gas Dynamics (CRC Press, Boca Raton, FL, 1994).Google Scholar
  10. 10.
    G. A. Alekseev, “Influence of electromagnetic fields on the evolution of initially homogeneous and isotropic universe,” Proc. Steklov Inst. Math. 281, 129–139 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    I. I. Gutman and R. M. Bespal’ko, “Some exact spherically symmetric solutions of Einstein’s equations,” in: Modern Problems of Gravitation (1967, in Russian), p. 201.Google Scholar
  12. 12.
    D. Kramer et al., Exact Solutions of the Einshtein Field Equations (Deutscher Verlag der Wissenschaften, Berlin, 1980).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of MechanicsMoscow State UniversityMoscowRussia

Personalised recommendations