Gravitation and Cosmology

, Volume 25, Issue 2, pp 179–183 | Cite as

Cosmological Solutions in 2 + 1-Dimensional New Massive Gravity in the Presence of the Dirac Field

  • Ganim GecimEmail author
  • Yusuf Sucu


We consider a 2 + 1-dimensional gravitational theory including a Dirac field that is minimally coupled to New Massive Gravity. We investigate cosmological solutions of the field equations by using the self-interaction potential obtained by the existence of Noether symmetry. In this context, we obtain cosmological solutions that correspond to inflationary as well as the oscillatory epochs of the universe. Moreover, we observe that the Dirac field behaves like dark energy in these epochs of the universe.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. A. Bergshoeff, O. Hohm, and P. K. Townsend, “Massive Gravity in Three Dimensions,” Phys. Rev. Lett. 102, 201301 (2009).MathSciNetCrossRefGoogle Scholar
  2. 2.
    E. A. Bergshoeff, O. Hohm, and P. K. Townsend, “More on massive 3D gravity,” Phys. Rev D 79, 124042 (2009).MathSciNetCrossRefGoogle Scholar
  3. 3.
    K. S. Stelle, “Renormalization of higher-derivative quantum gravity,” Phys. Rev D 16, 953 (1977).MathSciNetCrossRefGoogle Scholar
  4. 4.
    I. Oda, “Renormalizability of massive gravity in three dimensions,” JHEP 05 064 (2009).MathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Nakasone and I. Oda, “On unitarity of massive gravity in three dimensions,” Prog. Theor. Phys 121, 1389 (2009).CrossRefzbMATHGoogle Scholar
  6. 6.
    N. Ohta, “A complete classification of higher deriva tive gravity in 3D and criticality in 4D,” Class. Quan tum Grav. 29, 015002 (2012).CrossRefzbMATHGoogle Scholar
  7. 7.
    K. Muneyuki and N. Ohta, “Unitarity versus renor malizability of higher derivative gravity in 3D,” Phys. Rev. D 85, 101501 (2012).CrossRefGoogle Scholar
  8. 8.
    J. Oliva, D. Tempo, and R. Troncoso, “Threedimensional black holes, gravitational solitons, kinks and wormholes for BHT massive gravity,” JHEP 07, 011 (2009).CrossRefGoogle Scholar
  9. 9.
    E. Ayon-Beato, A. Garbarz, and M. Hassaine, “Lifshitz black hole in three dimensions,” Phys. Rev. D 80, 104029 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    G. Clement, “Warped-AdS3 black holes in new massive gravity,” Class. Quantum Grav. 26, 105015 (2009).CrossRefzbMATHGoogle Scholar
  11. 11.
    Y. Kwon, S. Nam, J. Park, and S. Yi, “Quasinormal modes for new type black holes in new massive grav ity,” Class. Quantum Grav. 28, 145006 (2011).CrossRefzbMATHGoogle Scholar
  12. 12.
    G. Gabadadze, G. Giribet, and A. Iglesias, “New massive gravity on de Sitter space and black holes at the special ooint,” arXiv: 1212.6279.Google Scholar
  13. 13.
    E. Ayon-Beato, G. Giribet, and M. Hassaine, “Bend ing AdS waves with new massive gravity,” JHEP 05, 029 (2009)CrossRefGoogle Scholar
  14. 14.
    H. Ahmedov and A. N. Aliev, “The general type N solution of new massive gravity,” Phys. Lett. B 694, 143 (2010).MathSciNetCrossRefGoogle Scholar
  15. 15.
    H. Ahmedov and A. N. Aliev, “Exact solutions in 3D new massive gravity,” Phys. Rev. Lett. 106, 021301 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    G. Gecim and Y Sucu, “Tunneling of relativistic particles from new type black hole in new massive gravity,” JCAP 02, 023 (2013).CrossRefGoogle Scholar
  17. 17.
    G. Gecim and Y Sucu, “Dirac and scalar parti cles tunneling from topological massive warped-AdS3 black hole,” Astrophys. Space Sci. 357, 105 (2015).CrossRefGoogle Scholar
  18. 18.
    G. Gecim and Y Sucu, “Quantum gravity effect on the tunneling particles from warped-AdS3 black hole,” Mod. Phys. Lett. A 33, 1850164 (2018).CrossRefzbMATHGoogle Scholar
  19. 19.
    D. J. Qi, “Fermions tunneling mechanism for a new class of black holes in EGB gravity and threedimensional Lifshitz black hole,” Int. J. Theor. Phys. 52, 345 (2013).CrossRefzbMATHGoogle Scholar
  20. 20.
    G. Gecim and Y Sucu, “Massive vector bosons tun neled from the (2 + 1)-dimensional black holes,” Eur. Phys. J. Plus 132, 105 (2017).CrossRefGoogle Scholar
  21. 21.
    G. Gecim and Y Sucu, “The GUP effect on tunnelling of massive vector bosons from the 2 + 1-dimensional black hole,” Adv. High Energy Phys. 2018, 7031767 (2018).zbMATHGoogle Scholar
  22. 22.
    P. A. R. Ade et al., “Detection of B-mode polarization at degree angular scales by BICEP2,” Phys. Rev. Lett. 112, 241101 (2014).CrossRefGoogle Scholar
  23. 23.
    P. A. R. Ade et al., “Planck 2013 results. XVI. Cosmological parameters,” Astron. Astroph. 571, A16 (2014).CrossRefGoogle Scholar
  24. 24.
    D. N. Spergel et al., “First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Deter mination of cosmological parameters,” Astroph. J. Suppl. 148, 175 (2003).CrossRefGoogle Scholar
  25. 25.
    D.N. Spergel, et al., “Three-year Wilkinson Mi crowave Anisotropy Probe (WMAP) observations: Implications for cosmology,” Astroph. J. Suppl. 177, 377 (2007).CrossRefGoogle Scholar
  26. 26.
    A. H. Guth, “Inflationary universe: A possible solu tion to the horizon and flatness problems,” Phys. Rev. D 23, 347 (1981).CrossRefzbMATHGoogle Scholar
  27. 27.
    A. D. Linde, “Chaotic Inflation,” Phys. Lett. B 129, 177 (1983).CrossRefGoogle Scholar
  28. 28.
    B. Saha, “Spinor field in a Bianchi type-1 universe: Regular solutions,” Phys. Rev. D 64, 123501 (2001).MathSciNetCrossRefGoogle Scholar
  29. 29.
    M. O. Ribas, M. O. Devecchi, and G. M. Kremer, “Fermions as sources of accelerated regimes in cos mology,” Phys. Rev. D 72, 123502 (2005).CrossRefGoogle Scholar
  30. 30.
    M. O. Ribas and G. M. Kremer, “Cosmological model with non-minimally coupled fermionic field,” Europhys. Lett. 81, 19001 (2008).MathSciNetCrossRefGoogle Scholar
  31. 31.
    B. Vakili, S. Jalalzadeh, and H.G. Sepangi, “Clas sical and quantum spinor cosmology with signature change,” JCAP 05, 006 (2008).zbMATHGoogle Scholar
  32. 32.
    R. C. De Souza and G. M. Kremer, “Noether symme try for non-minimally coupled fermion fields,” Class. Quantum Grav. 25, 225006 (2008).CrossRefzbMATHGoogle Scholar
  33. 33.
    G. Gecim, Y. Kucukakca, and Y. Sucu, “Noether gauge symmetry of Dirac field in (2 + 1)-dimensional gravity,” Adv. High Energy Phys. 2015, 567395 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    G. Gecim and Y. Sucu, “Dirac field as a source of the inflation in 2 + 1-dimensional teleparallel gravity,” Adv. High Energy Phys. 2017, 2056131 (2017).CrossRefzbMATHGoogle Scholar
  35. 35.
    Y. Kucukakca, “Teleparallel dark energy model with a fermionic field via Noether symmetry,” Eur. Phys. J. C 74, 3086 (2014).CrossRefGoogle Scholar
  36. 36.
    Y. Sucu and N. Unal, “Exact solution of Dirac equa tion in 2+1 dimensional gravity,” J. Math. Phys. 48 (5), 052503 (2007).Google Scholar
  37. 37.
    M. Demianski, et al., “Scalar field, nonminimal cou pling, and cosmology,” Phys. Rev. D 44 (10), 3136 (1991).MathSciNetCrossRefGoogle Scholar
  38. 38.
    S. Capozziello and R. de Ritis, “Relation between the potential and nonminimal coupling in inflationary cosmology,” Phys. Lett. A 177, 1–7 (1993).MathSciNetCrossRefGoogle Scholar
  39. 39.
    J. D. Barrow and M. P. Dabrowski, “Oscillating uni verses,” MNRAS 275, 850 (1995).CrossRefGoogle Scholar
  40. 40.
    S. Carloni, S. Vignolo, and R. Cianci, “Nonminimally coupled condensate cosmologies: a phase space analysis,” Class. Quantum Grav. 31, 185007 (2014).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of PhysicsAkdeniz UniversityAntalyaTurkey

Personalised recommendations