Advertisement

Gravitation and Cosmology

, Volume 25, Issue 2, pp 122–130 | Cite as

Rotating Cylinders with Anisotropic Fluids in General Relativity

  • S. V. BolokhovEmail author
  • K. A. Bronnikov
  • M. V. Skvortsova
Article
  • 2 Downloads

Abstract

We consider anisotropic fluids with directional pressures pi = wiρ (ρ is the density, wi = const, i = 1, 2, 3) as sources of gravity in stationary cylindrically symmetric space-times. We describe a general way of obtaining exact solutions with such sources, where the main features are splitting of the Ricci tensor into static and rotational parts and using the harmonic radial coordinate. Depending on the values of wi, it appears possible to obtain general or special solutions to the Einstein equations, thus recovering some known solutions and finding new ones. Three particular examples of exact solutions are briefly described: with a stiff isotropic perfect fluid (p = ρ), with a distribution of cosmic strings of azimuthal direction (i.e., forming circles around the z axis), and with a stationary combination of two opposite radiation flows along the z axis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Lanczos, “’´Ueber eine station’´ are Kosmologie in Sinne der Einsteinischen Gravitationstheories,” Z. Physik 21, 73 (1924).CrossRefGoogle Scholar
  2. 2.
    T. Lewis, “Some special solutions of the equations of axially symmetric gravitational fields,” Proc. R. Soc. A 136, 176 (1932).CrossRefzbMATHGoogle Scholar
  3. 3.
    N. O. Santos, “Solution of the vacuum Einstein equations with nonzero cosmological constant for a stationary cylindrically symmetric spacetime,” Class. Quantum Grav. 10, 2401 (1993).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    A. Krasinski, “Solutions of the Einstein field equations for a rotating perfect fluid II: properties of the flow-stationary and and vortex-homogeneous solutions,” Acta Phys. Pol. 6, 223 (1975).MathSciNetGoogle Scholar
  5. 5.
    M. A. H. MacCallum and N. O. Santos, “Stationary and static cylindrically symmetric Einstein spaces of the Lewis form,” Class. Quantum Grav. 15, 1627 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    K. A. Bronnikov, V. G. Krechet, and José P. S. Lemos, “Rotating cylindrical wormholes,” Phys. Rev. D 87, 084060 (2013); arXiv: 1303.2993.CrossRefGoogle Scholar
  7. 7.
    K. A. Bronnikov and V. G. Krechet, “Rotating cylindrical wormholes and energy conditions,” Int. J. Mod. Phys. A 31, 1641022 (2016); arXiv: 1509.04665.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    C. Erices and C. Martinez, “Stationary cylindrically symmetric spacetimes with amassless scalar field and a nonpositive cosmological constant,” Phys. Rev. D 92, 044051 (2015).MathSciNetCrossRefGoogle Scholar
  9. 9.
    W. J. van Stockum, “The gravitational field of a distribution of particles rotating about an axis of symmetry,” Proc. Roy. Soc. Edinburgh A 57, 135 (1937).CrossRefzbMATHGoogle Scholar
  10. 10.
    W. B. Bonnor and B. R. Steadman, “A vacuum exterior to Maitra’s cylindrical dust solution,” Gen. Rel. Grav. 41, 1381 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    B. V. Ivanov, “The general double-dust solution,” grqc/0209032Google Scholar
  12. 12.
    B. V. Ivanov, “Rigidly rotating cylinders of charged dust,” Class. Quantum Grav. 19, 5131 (2002); grqc/0207013.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    N. O. Santos and R. P. Mondaini, “Rigidly rotating relativistic generalized dust cylinder,” Nuovo Cim. B. 72, 13 (1982)MathSciNetCrossRefGoogle Scholar
  14. 14.
    C. Hoenselaers and C. V. Vishveshwara, “A relativistically rotating fluid cylinder,” Gen. Rel. Grav. 10, 43–51 (1979).CrossRefzbMATHGoogle Scholar
  15. 15.
    W. Davidson, “Barotropic perfect fluid in steady cylindrically symmetric rotation,” Class. Quantum Grav. 14, 119 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    W. Davidson, “A cylindrically symmetric stationary solution of Einstein’s equations describing a perfect fluid of finite radius,” Class. Quantum Grav. 17, 2499 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    D. Sklavenites, “Stationary perfect fluid cylinders,” Class. Quantum Grav. 16, 2753 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    V. D. Ivashchuk, “Composite S-brane solutions related to Toda-type systems,” Class. Quantum Grav. 20, 261 (2003); hep-th/0208101.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    B. V. Ivanov, “On rigidly rotating perfect fluid cylinders,” Class. Quantum Grav. 19, 3851 (2002); grqc/0205023.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    P. S. Letelier and E. Verdaguer, “Anisotropic fluid with SU(2) type structure in general relativity: A model of localized matter,” J.Math. Phys. 28, 2431 (1987).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    L. Herrera, G. Le Denmat, G. Marcilhacy, and N. O. Santos, “Static cylindrical symmetry and conformal flatness,” Int. J. Mod. Phys. D 14, 657 (2005); gr-qc/0411107.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    F. Debbasch, L. Herrera, P. R. C. T. Pereira, and N. O. Santos, “Stationary cylindrical anisotropic fluid,” Gen. Rel. Grav. 38, 1825 (2006); grqc/0609068.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    H. Stephani, D. Kramer, M. A. H. MacCallum, C. Hoenselaers, and E. Herlt, Exact solutions of Einstein’s field equations, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2009).zbMATHGoogle Scholar
  24. 24.
    K. A. Bronnikov, N. O. Santos, and Anzhong Wang, “Cylindrical systems in general relativity,” arXiv: 1901.06561.Google Scholar
  25. 25.
    K. A. Bronnikov, “Static fluid cylinders and plane layers in general relativity,” J. Phys. A, Math. Gen. 12, 201 (1979).CrossRefGoogle Scholar
  26. 26.
    K. A. Bronnikov and José P. S. Lemos, “Cylindrical wormholes,” Phys. Rev. D 79, 104019 (2009); arXiv: 0902.2360.CrossRefGoogle Scholar
  27. 27.
    K. A. Bronnikov and, V. G. Krechet, “Potentially observable cylindrical wormholes without exotic matter in GR,” arXiv: 1807.03641; Phys. Rev. D, to appear.Google Scholar
  28. 28.
    K. A. Bronnikov, S. V. Bolokhov, and M. V. Skvortsova, “Cylindrical wormholes:a search for viable phantom-free models in GR,” Int. J. Mod. Phys. D 28, 1941008 (2019).CrossRefGoogle Scholar
  29. 29.
    V. G. Krechet, Izvestiya Vuzov, Fiz., No. 10, 57 (2007).Google Scholar
  30. 30.
    V. G. Krechet and D. V. Sadovnikov, Grav. Cosmol. 15, 337 (2009); arXiv: 0912.2181.CrossRefGoogle Scholar
  31. 31.
    K. A. Bronnikov and S. G. Rubin, Black Holes, Cosmology and Extra Dimensions (World Scientific, 2012).CrossRefzbMATHGoogle Scholar
  32. 32.
    G. Darmois, Mémorial des Sciences Mathematiques (Gauthier-Villars, Paris, 1927).Google Scholar
  33. 33.
    W. Israel, Nuovo Cim. B 48, 463 (1967).CrossRefGoogle Scholar
  34. 34.
    V. A. Berezin, V. A. Kuzmin, and I. I. Tkachev, Phys. Rev. D 36, 2919 (1987).MathSciNetCrossRefGoogle Scholar
  35. 35.
    K. A. Bronnikov, “Rotating cylindrical wormholes: A no-go theorem,” J. Phys. Conf. Series 675, 012028 (2016); arXiv: 1509.06924.CrossRefGoogle Scholar
  36. 36.
    K. A. Bronnikov, S.-W. Kim, and M. V. Skvortsova, “The Birkhoff theorem and string clouds,” Class. Quantum Grav. 33, 195006 (2016).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. V. Bolokhov
    • 1
    Email author
  • K. A. Bronnikov
    • 1
    • 2
    • 3
  • M. V. Skvortsova
    • 1
  1. 1.Peoples’ Friendship University of Russia (RUDN University)MoscowRussia
  2. 2.Center for Gravitation and Fundamental MetrologyVNIIMSMoscowRussia
  3. 3.National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations