Advertisement

Gravitation and Cosmology

, Volume 25, Issue 2, pp 184–189 | Cite as

Geometric Phase of Linear Cosmological Perturbations in Two-Field Inflation

  • Hamideh Balajany
  • Mohammad MehrafarinEmail author
Article
  • 5 Downloads

Abstract

As a footprint of primordial perturbations in cosmological observations, the Berry phase of cosmological perturbations can serve to probe the cosmological inflation. Considering linear perturbations in two-field slow-roll inflation, we derive the Hamiltonians of the scalar and tensor Fourier modes in the form of time-dependent harmonic oscillator Hamiltonians. We find the invariant operators of the resulting Hamiltonians and use these invariants to calculate the Berry phase for sub-horizon scalar and tensor modes in the adiabatic limit.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Berry, Proc. Roy. Soc. Lond. A 392, 45 (1984).CrossRefGoogle Scholar
  2. 2.
    A. Shapere and F. Wilczek, Geometric Phases in Physics (World Scientific, Singapore, 1989).zbMATHGoogle Scholar
  3. 3.
    A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, and J. Zwanziger, The Geometric Phase in Quantum Systems: Foundations, Mathematical Concepts, Applications in Molecular and Condensed Matter Physics (Springer, Berlin, 2013).zbMATHGoogle Scholar
  4. 4.
    M. Mehrafarin and H. Balajany, Phys. Lett. A 374, 1608 (2010).MathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Mehrafarin and R. Torabi, Phys. Lett. A 373, 2114 (2009).CrossRefGoogle Scholar
  6. 6.
    R. Torabi and M. Mehrafarin, JETP Lett. 95, 277 (2012).CrossRefGoogle Scholar
  7. 7.
    R. Torabi and M. Mehrafarin, JETP Lett. 88, 590 (2008).CrossRefGoogle Scholar
  8. 8.
    K. Bakke, I. Pedrosa, and C. Furtado, J. Math. Phys. 50, 3521 (2009).CrossRefGoogle Scholar
  9. 9.
    Y. Q. Cai and G. Papini, Mod. Phys. Lett. A 4, 1143 (1989).CrossRefGoogle Scholar
  10. 10.
    Y. Q. Cai and G. Papini, Class. Quant. Grav. 7, 269 (1990).CrossRefGoogle Scholar
  11. 11.
    A. Corichi and M. Pierrie, Phys. Rev. D 51, 5870 (1995).MathSciNetCrossRefGoogle Scholar
  12. 12.
    P. O. Mazur, Phys. Rev. Lett. 57, 929 (1986).MathSciNetCrossRefGoogle Scholar
  13. 13.
    D. P. Dutta, Phys. Rev. D 48, 5746 (1993).CrossRefGoogle Scholar
  14. 14.
    V. F. Mukhanov, H. A. Feldmann, and R. H. Brandenberger, Phys. Rep. 215, 203 (1992).MathSciNetCrossRefGoogle Scholar
  15. 15.
    D. Campo and R. Parentani, Phys. Rev. D 74, 025001 (2006).CrossRefGoogle Scholar
  16. 16.
    A. H. Guth, Phys. Rev. D 23, 347 (1981).CrossRefGoogle Scholar
  17. 17.
    B. A. Bassett, S. Tsujikawa and D. Wands, Rev. Mod. Phys. 78, 537 (2006).CrossRefGoogle Scholar
  18. 18.
    B. K. Pal, S. Pal, and B. Basu, Class. Quantum Grav. 30, 12 (2013).CrossRefGoogle Scholar
  19. 19.
    D. Polarski and A. A. Starobinsky, Nucl. Phys. B 385, 623 (1992).CrossRefGoogle Scholar
  20. 20.
    V. F. Mukhanov and P. J. Steinhardt, Phys. Lett. B 422, 52 (1998).CrossRefGoogle Scholar
  21. 21.
    D. Langlois, Phys. Rev. D 59, 123512 (1999).CrossRefGoogle Scholar
  22. 22.
    J. C. Hwang and H. Noh, Phys. Lett. B 495, 277 (2000).CrossRefGoogle Scholar
  23. 23.
    C. Gordon, D. Wands, B. A. Bassett, and R. Maartens, Phys. Rev. D 63, 023506 (2000).CrossRefGoogle Scholar
  24. 24.
    J. C. Hwang and H. Noh, Class. Quant. Grav. 19, 527 (2002).CrossRefGoogle Scholar
  25. 25.
    S. G. Nibbelink and B. van Tent, Class. Quant. Grav. 19, 613 (2002).CrossRefGoogle Scholar
  26. 26.
    R. Schützhold, M. Uhlmann, L. Petersen, H. Schmitz, A. Friedenauer, and T. Schätz, Phys. Rev. Lett. 99, 201301 (2007).CrossRefGoogle Scholar
  27. 27.
    I. Fuentes-Guridi, S. Bose, and V. Vedral, Phys. Rev. Lett. 85, 5018 (2000).CrossRefGoogle Scholar
  28. 28.
    H. R. Jr. Lewis, J. Math. Phys. 9, 1997 (1968).CrossRefGoogle Scholar
  29. 29.
    H. R. Jr. Lewis and W. B. Riesenfeld, J. Math. Phys. 10, 1458 (1969).CrossRefGoogle Scholar
  30. 30.
    J. G. de Assis, V. B. Bezerra, and C. Furtado, Mod. Phys. Lett. A 17, 1665 (2002).CrossRefGoogle Scholar
  31. 31.
    A. M. de M. Carvalho, C. Furtado, and I. A. Pedrosa, Phys. Rev. D 70, 123523 (2004).MathSciNetCrossRefGoogle Scholar
  32. 32.
    I. A. Pedrosa, C. Furtado, and A. Rosas, Phys. Lett. B 651, 384 (2007).MathSciNetCrossRefGoogle Scholar
  33. 33.
    I. A. Pedrosa, K. Bakkae, and C. Furtado, Phys. Lett. B 671, 314 (2009).CrossRefGoogle Scholar
  34. 34.
    C. E. F. Lopes, I. A. Pedrosa, C. Furtado, and A. M. De M. Carvalho, J. Math. Phys. 50, 083511 (2009).MathSciNetCrossRefGoogle Scholar
  35. 35.
    D. B. Monteoliva, H. J. Korsch, and J. A. Nunez, J. Phys. A 27, 6897 (1994).MathSciNetCrossRefGoogle Scholar
  36. 36.
    R. Arnowitt, S. Deser, and C. Misner, Phys. Rev. 116, 1322 (1959).MathSciNetCrossRefGoogle Scholar
  37. 37.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W.H. Freeman, San Francisco, 1973).Google Scholar
  38. 38.
    J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Phys. Rev. D 28, 679 (1983).CrossRefGoogle Scholar
  39. 39.
    D. Wands, K. A. Malik, D. H. Lyth, and A. R. Liddle, Phys. Rev. D 62, 043527 (2000).MathSciNetCrossRefGoogle Scholar
  40. 40.
    K. A. Malik and D. Wands, Class. Quant. Grav. 21, 65 (2004).CrossRefGoogle Scholar
  41. 41.
    G. I. Rigopoulos and E. P. S. Shellard, Phys. Rev. D 68, 123518 (2003).MathSciNetCrossRefGoogle Scholar
  42. 42.
    G. I. Rigopoulos, E. P. S. Shellard, and B. J. W. van Tent, Phys. Rev. D 73 083521 (2006).CrossRefGoogle Scholar
  43. 43.
    E. Tzavara and B. Van Tent, JCAP, 2012, 023 (2012).CrossRefGoogle Scholar
  44. 44.
    M. H. Engineer and G. Ghosh, J. Phys. A 21, L95 (1988).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Physics DepartmentAmirkabir University of TechnologyTehranIran

Personalised recommendations