Advertisement

Gravitation and Cosmology

, Volume 25, Issue 1, pp 58–68 | Cite as

Holographic Ricci Dark Energy with Constant Bulk Viscosity in f(R,T) Gravity

  • C. P. SinghEmail author
  • Ajay KumarEmail author
Article
  • 11 Downloads

Abstract

The holographic Ricci dark energy (HRDE) model is studied with bulk viscosity in modified f(R, T) gravity theory. We consider a universe filled with bulk viscous HRDE and pressureless dark matter. We obtain exact solutions and study the evolution of the scale factor and deceleration parameter and their transition from decelerated to accelerated expansion of the universe. The bulk viscosity coefficient is assumed to be constant. The behaviors concerning the cosmic expansion depend on the coupling parameter of f(R, T) and bulk viscous term. We apply two geometric diagnostics, the statefinder {r, s} and Om(z), to discriminate HRDE model from the ΛCDM model. We plot the evolution trajectories in the statefinder plane and Om(z) plane. We find that the viscous HRDE model behaves like quintessence at small values of the bulk-viscous term and like a Chaplygin gas at large values of the bulk-viscous term. However, the model approaches ΛCDM at late times of the evolution of the universe. We explore the obvious violation of energy-momentum conservation in f(R, T) gravity and provide a thermodynamic interpretation of extra terms generated by the nonminimal geometry-matter coupling describing particle production. We observe that the current acceleration of our universe is well explained with bulk viscosity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Riess et al., Astron. J. 116, 1009 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    S. Perlmutter et al., Astrophys. J. 517, 565 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    S. Perlmutter et al., Astroph. J. 598, 102 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    D. N. Spergel et al., Astroph. J. Suppl. 170, 377 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    M. Tegmark et al., Phys. Rev. D 69, 103501 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    G.‘t Hooft, gr-qc/9310026.Google Scholar
  7. 7.
    L. Susskind, J. Math. Phys. 36, 6377 (1995).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    R. Bousso, Rev. Mod. Phys. 74, 825 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    A. Cohen, D. Kaplan, and A. Nelson, Phys. Rev. Lett. 82, 4971 (1999).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Li, Phys. Lett. B 603, 1 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    S. D. H. Hsu, Phys. Lett. B 594, 13 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    L. Xu, W. Li, and J. Lu, Eur. Phys. J. C60, 135 (2009).Google Scholar
  13. 13.
    M. Li, X. D. Li, S. Wang, and X. Zhang, JCAP 06, 036 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    C. Gao, F. Wu, and X. Chen, Phys. Rev. D 79, 043511 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    C-J. Feng, Phys. Lett. B 670, 231 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    J. D. Barrow, Phys. Lett. B 180, 335 (1987).ADSCrossRefGoogle Scholar
  17. 17.
    I. Brevik and O. Gorbunova, Gen. Rel. Grav. 37, 2039 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    I. Brevik and S. D. Odintsov, Phys. Rev. D 65, 067302 (2002).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    D. J. Liu and X. Z. Li, Phys. Lett. B 611, 8 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    C. Eckart, Phys. Rev. 58, 919 (1940).ADSCrossRefGoogle Scholar
  21. 21.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Butterworth Heinemann, Stoneham, 1987).Google Scholar
  22. 22.
    W. Israel and J. M. Stewart, Phys. Lett. A 58, 213 (1976).ADSCrossRefGoogle Scholar
  23. 23.
    Y. D. Xu, Z. G. Huang, and X. H. Zhai, Astroph. Space Sci. 337, 493 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    C. J. Feng and X. Z. Li, Phys. Lett. B680, 355 (2009).ADSCrossRefGoogle Scholar
  25. 25.
    S. Nojiri and S. D. Odintsov, Phys. Rev. D 72, 023003 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    S. Capozziello, V. F. Cardone, E. Elizalde, S. Nojiri, and S. D. Odintsov, Phys. Rev. D 73, 043512 (2006).ADSCrossRefGoogle Scholar
  27. 27.
    N. Cruz, S. Lepe, and F. Pena, Phys. Lett. B 646, 177 (2007).ADSCrossRefGoogle Scholar
  28. 28.
    X. H. Meng, J. Ren, and M. G. Hu, Commun. Theor. Phys. 47, 379 (2007).ADSCrossRefGoogle Scholar
  29. 29.
    J. Ren and X. H. Meng, Phys. Lett. B 633, 1 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    M. G. Hu and X. H. Meng, Phys. Lett. B 635, 186 (2006).ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    P. Kumar and C. P. Singh, Astroph. Space Sci. 357, 120 (2015).ADSCrossRefGoogle Scholar
  32. 32.
    C. P. Singh, Pramana J. Phys. 71, 33 (2008).ADSCrossRefGoogle Scholar
  33. 33.
    C. P. Singh, S. Kumar, and A. Pradhan, Class. Quantum Grav. 24, 455 (2007).ADSCrossRefGoogle Scholar
  34. 34.
    C. P. Singh and P. Kumar, Eur. Phys. J. C 74, 3070 (2014).ADSCrossRefGoogle Scholar
  35. 35.
    J. S. Gagnon and J. Lesgourgues, JCAP 09, 026 (2011).ADSCrossRefGoogle Scholar
  36. 36.
    S. Nojiri and S. D. Odintsov, Phys. Rep. 505, 59 (2011).ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    K. Bamba et al., Astroph. Space Sci. 342, 155 (2012).ADSCrossRefGoogle Scholar
  38. 38.
    T. Harko et al., Phys. Rev. D 84, 024020 (2011).ADSCrossRefGoogle Scholar
  39. 39.
    M. Sharif and J. Zubair, JCAP 03, 028 (2012).ADSCrossRefGoogle Scholar
  40. 40.
    S. Chakraborty, Gen. Rel. Grav. 45, 2039 (2013).ADSCrossRefGoogle Scholar
  41. 41.
    T. Harko, Phys. Rev. D 90, 044067 (2014).ADSCrossRefGoogle Scholar
  42. 42.
    C. P. Singh and V. Singh, Gen. Rel. Grav. 46, 1696 (2014).ADSCrossRefGoogle Scholar
  43. 43.
    E. H. Baffou et al., Astroph. Space Sci. 356, 173 (2015).ADSCrossRefGoogle Scholar
  44. 44.
    D. Momeni, P. H. R. S. Moraes, and R. Myrzakulov, Astroph. Space Sci. 361, 225 (2016).ADSCrossRefGoogle Scholar
  45. 45.
    C. P. Singh and P. Kumar, Astroph. Space Sci. 361, 157 (2016).ADSCrossRefGoogle Scholar
  46. 46.
    E. H. Baffou, M. J. S. Houndjo, and M. Hamani-Daouda, Eur. Phys. J. C 77, 708 (2017).ADSCrossRefGoogle Scholar
  47. 47.
    E. H. Baffou, M. J. S. Houndjo, and I. G. Salako, Int. J. Geom. Meth. Mod. Phys. 14, 50051 (2017).CrossRefGoogle Scholar
  48. 48.
    S. Hamid, Int. J. Mod. Phys. D 26, 50128 (2017).Google Scholar
  49. 49.
    T. Harko and F. S. N. Lobo, Galaxies 2, 410 (2014).ADSCrossRefGoogle Scholar
  50. 50.
    S. Chattopadhyay, Proc. Nat. Sci. Acad. 84, 87 (2014).Google Scholar
  51. 51.
    I. Prigogine, J. Géhéniau, E. Gunzig, and P. Nardone, Proc. Matl. Acad. Sci. U. S. A. 85, 7428 (1988).ADSCrossRefGoogle Scholar
  52. 52.
    H. Shabani and A. H. Ziaie, Eur. Phys. J. C 77, 282 (2017).ADSCrossRefGoogle Scholar
  53. 53.
    J. R. Wilson, G. J. Mathews, and G. M. Fuller, Phys. Rev. D 75, 043521 (2007).ADSCrossRefGoogle Scholar
  54. 54.
    W. Zimdahl, Phys. Rev. D 53, 5483 (1996).ADSCrossRefGoogle Scholar
  55. 55.
    X. Zhang, Phys. Rev. D 79, 103509 (2009).ADSCrossRefGoogle Scholar
  56. 56.
    V. Sahni et al., JETP Lett. 77, 201 (2003).ADSCrossRefGoogle Scholar
  57. 57.
    U. Alam et al., Mon. Not. R. Astron. Soc. 344, 1057 (2003).ADSCrossRefGoogle Scholar
  58. 58.
    B. Wu Ya, S. Li, M. H. Fu, and J. He, Gen. Rel. Grav. 39, 653 (2007).ADSCrossRefGoogle Scholar
  59. 59.
    V. Sahni, A. Shafeloo, and A. A. Starobinsky, Phys. Rev. D 78, 103502 (2008).ADSCrossRefGoogle Scholar
  60. 60.
    S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (JohnWiley and Sons, NY, 1972).Google Scholar
  61. 61.
    C. W. Misner, K. S. Thorne, and J. A. Wheelerer, Gravitation (W. H. Freeman, USA,1973).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Applied MathematicsDelhi Technological UniversityDelhiIndia

Personalised recommendations