Gravitation and Cosmology

, Volume 25, Issue 1, pp 50–57 | Cite as

The Role of Initial Conditions and Parameters of the Model in Evolution of the Universe. Case Study: Brans-Dicke Theory in Einstein Frame

  • A. SalehiEmail author
  • H. Farajollahi
  • S. Aryamanesh


The dynamics of the Brans-Dicke (BD) cosmology in the Einstein frame is studied. We implement phase-space analysis in order to investigate the role of initial conditions and model parameters in the evolution of the universe. The phase plane algorithm and stability of the model are considered in the Einstein Frame where the cosmological background is described in Λ-Cold Dark Matter (ΛCDM) and is supplemented by a Jordan-Fierz-Brans-Dicke field. Our results show: (1) The model parameter α (the coupling strength of the BD scalar field to matter sources) in the Einstein frame plays an important role in the model stability whereas the initial conditions significantly affect the cosmic dynamics. (2) Using type Ia SNIa data, we fit the parameters of the model with observation and show that the current value of the effective equation of state (EoS) parameter is within the range supported by observations. (3) The phase space analysis implies that the universe approaches an attractor in the near future.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Dunkley et al., “Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Bayesian estimation of CMB polarizaztion maps,” Astrophys. J. 701, 1804 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    E. Komatsu et al., “CMB anisotropies at second order III: Bispectrum from products of the first-order perturbations,” Astrophys. J. Suppl. 180, 330 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    S. Perlmutter et al., “Measurements of Omega and Lambda from 42 high-redshift supernovae,” Astrophys. J. 517, 565 (1999).ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    A. G. Riess et al., “Observational evidence from Supernovae for an accelerating Universe and a cosmological constant,” Astron. J. 116, 1009 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    J. L. Tonry et al., “Cosmological results from high-z Supernovae,” Astrophys. J. 594, 1 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    A. G. Riess et al., “Type Ia Supernova discoveries at z > 1 from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution,” Astrophys. J. 607, 665 (2004).ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    D. J. Eisenstein et al., “Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies,” Astrophys. J. 633, 560 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    C. Blake et al., “A primer on hierarchical galaxy formation: the semi-analytical approach,” Mon. Not. Roy. Astron. Soc. 365, 255 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, “Modified gravity and cosmology,” Phys. Rep. 513, 1 (2012); arXiv:1106. 2476.ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    K. Koyama, “Cosmological tests of modified gravity,” Rep. Prog. Phys. 79, 046902 (2016); arXiv: 1504. 04623.ADSCrossRefGoogle Scholar
  11. 11.
    C. Brans and R. H. Dicke, “Mach’s principle and a relativistic theory of gravitation,” Phys. Rev. 124, 925 (1961).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    P. Jordan, Schwerkaft und Weltall. A New Strategy for Solving Two Cosmological Constant Problems in Hadron Physics. (Vieweg, Braunschweig, 1955).Google Scholar
  13. 13.
    A. A. Starobinsky and J. Yokoyama, “Density fluctuations in Brans-Dicke inflation,” gr-qc/9502002.Google Scholar
  14. 14.
    S. Tsujikawa, “Modified gravity models of dark energy,” Lect. Notes Phys. 800, 99 (2010); arXiv: 1101. 0191.ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    L. Qiang, Y. Ma, M. Han, and D. Yu, “Fivedimensional Brans-Dicke theory and cosmic acceleration,” Phys. Rev. D 71, 061501(R) (2005).Google Scholar
  16. 16.
    L. Qiang, Y. Gong, Y. Ma, and X. Chen, “Fixed points in interacting dark energymodels,” Phys. Lett. B 681, 210 (2009); arXiv: 0910. 1885.ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    E. Babichev and D. Langlois, “Relativistic stars in f(R) and scalar-tensor theories,” Phys. Rev. D 81, 124051 (2010); arXiv: 0911. 1297.ADSCrossRefGoogle Scholar
  18. 18.
    C. H. Brans, “The roots of scalar-tensor theory: An approximate history,” gr-qc/0506063.Google Scholar
  19. 19.
    A. Coc, K. A. Olive, J. P. Uzan, and E. Vangioni, “QCD effects in cosmology,” arXiv: 0811. 1845.Google Scholar
  20. 20.
    G. Esposito-Farèse and D. Polarski, “Scalar-tensor gravity in an accelerating universe,” Phys. Rev. D 63, 063504 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    J. A. R. Cembranos and A. de la Cruz Dombriz, “A f(R) gravity without cosmological constant,” Phys. Rev. D 88, 123507 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    A. Hojjati, L. Pogosian, and G.-B. Zhao, “Testing gravity with CAMB and CosmoMC,” JCAP 1108, 005 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    K. N. Ananda, S. Carloni, and P. K. S. Dunsby, “A characteristic signature of fourth order gravity,” Class. Quantum Grav. 26, 235018 (2009); arXiv: 0812. 2028.ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    A. de la Cruz-Dombriz, A. Dobado, and A. L. Maroto, Phys. Rev. Lett. 103, 179001 (2009).ADSCrossRefGoogle Scholar
  25. 25.
    A. Abebe, A. de la Cruz-Dombriz, and P. K. S. Dunsby, “Large scale structure constraints for a class of f(R) theories of gravity,” arXiv: 1304. 3462.Google Scholar
  26. 26.
    A. G. Riess et al., “A cosmic vector for dark energy,” Astrophys. J. 607, 665 (2004).ADSCrossRefGoogle Scholar
  27. 27.
    S. Cole et al., “A primer on hierarchical galaxy formation: the semi-analytical approach,” Mon. Not. R. Astron. Soc. 362, 505 (2005).ADSCrossRefGoogle Scholar
  28. 28.
    R. Yan et al., “Fitting the integrated spectral energy distributions of galaxies,” Mon. Not. R. Astron. Soc. 398, 735 (2009).ADSCrossRefGoogle Scholar
  29. 29.
    R. Amanullah et al., “Spectra and light curves of six Type Ia Supernovae at 0. 511 < z < 1. 12 and the Union2 Compilation,” arXiv: 1004. 1711.Google Scholar
  30. 30.
    Y.-F. Cai et al., “Direct probe of dark energy through gravitational dark energy,” Phys. Rept, in press, doi10. 1016/j. physrep. 2010. 04. 001 (2010).Google Scholar
  31. 31.
    T. Gonzalez, G. Leon, and I. Quiros, “Emergent Universe with exotic matter,” Class. Quantum Grav. 23, 165 (2006).MathSciNetCrossRefGoogle Scholar
  32. 32.
    S. Nojiri, S. D. Odintsov, and S. Jhingan, Phys. Lett. B 562, 147 (2003).ADSCrossRefGoogle Scholar
  33. 33.
    R. R. Caldwell, M. Kamionkowski, and N. N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003).ADSCrossRefGoogle Scholar
  34. 34.
    Y.-F. Cai and J. Wang, Class. Quantum Grav. 25, 165014 (2008).ADSCrossRefGoogle Scholar
  35. 35.
    J. Q. Xia et al., Int. J. Mod. Phys. D17, 1229 (2009).Google Scholar
  36. 36.
    E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006).ADSCrossRefGoogle Scholar
  37. 37.
    P. A. R. Ade et al., “Planck 2015 results-xiii. Cosmological parameters,” Astron. Astroph. 594, A13 (2016).CrossRefGoogle Scholar
  38. 38.
    Alejandro Aviles et al., “Holographic dark matter and dark energy with second order invariant,” Phys. Rev. D 84, 103520 (2011).ADSCrossRefGoogle Scholar
  39. 39.
    Orest Hrycyna and Marek Szydlowski, “Cosmological dynamics with nonminimally coupled scalar field and a constant potential function,” JCAP 12, 016 (2013).Google Scholar
  40. 40.
    G. Papagiannopoulos, John D. Barrow, S. Basilakos, A. Giacomini, and A. Paliathanasis, “Dynamical symmetries in Brans-Dicke cosmology,” Phys. Rev. D 95, 024021 (2017).ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    A. Salehi, H. Farajollahi, and S. Aryamanesh, Grav. Cosmol. 24, 292 (2018).ADSCrossRefGoogle Scholar
  42. 42.
    G. Esposito-Farese and D. Polarski, “Scalar-tensor gravity in an accelerating universe,” Phys. Rev. D 63, 063504 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of PhysicsLorestan UniversityKhoramabadIran
  2. 2.Department of PhysicsUniversity of GuilanRashtIran
  3. 3.School of PhysicsUniversity of New South WalesWalesAustralia

Personalised recommendations