Advertisement

Gravitation and Cosmology

, Volume 25, Issue 1, pp 37–43 | Cite as

Peculiarities of Cosmological Models Based on a Nonlinear Asymmetric Scalar Doublet with Minimal Interaction. II. Numerical Analysis

  • Yu. G. Ignat’evEmail author
  • I. A. Kokh
Article
  • 7 Downloads

Abstract

We carry out a detailed analysis and numerical simulations of the evolution of cosmological models based on a doublet of classical and phantom scalar fields with self-interaction. 2D and 3D projections of the phase portraits of the corresponding dynamic system are built. Just as in the case of single scalar fields, the phase space of such systems becomes multiply connected, the ranges of negative total effective energy, unavailable for motion, appear there. A distinctive feature of the asymmetric scalar doublet is the time dependence of the forbidden range projections on the phase subspaces of each field, and, as a result, the existence of the limiting cycles with zero effective energy depends on the parameters of the field model and on the initial conditions. The numerical models are built where the dynamic system has limiting cycles on zero energy hypersurfaces. Three characteristic types of behavior of the cosmological model based on an asymmetric scalar doublet are identified.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. G. Ignat’ev and I. A. Kokh, Grav. Cosmol. (this issue).Google Scholar
  2. 2.
    Yu. G. Ignat’ev and A. R. Samigullina, Space, Time and Fundamental Interections. 3(20), 28 (2017).Google Scholar
  3. 3.
    Yu. G. Ignat’ev, A. A. Agathonov, and D. Ignatyev, Grav. Cosmol. 24, 1 (2018).ADSCrossRefGoogle Scholar
  4. 4.
    Yu. G. Ignat’ev, Space, Time and Fundamental Interections 1(1), 79 (2012).Google Scholar
  5. 5.
    Yu. G. Ignat’ev and M. L. Mikhailov, Space, Time and Fundamental Interections 4(13), 75 (2015).Google Scholar
  6. 6.
    Yu. G. Ignat’ev, Russ. Phys. J. 59, 2074 (2017).CrossRefGoogle Scholar
  7. 7.
    Yu. G. Ignat’ev and A. A. Agathonov, Space, Time and Fundamental Interections 4(17), 52 (2016); arXiv: 1610. 04443.Google Scholar
  8. 8.
    Yu. G. Ignat’ev and A. A. Agathonov, Grav. Cosmol. 23, 230 (2017); arXiv: 1610. 04443.ADSCrossRefGoogle Scholar
  9. 9.
    Yu. G. Ignat’ev and A. A. Agathonov, Space, Time and Fundamental Interections 2, 36 (2017).CrossRefGoogle Scholar
  10. 10.
    Yu. Ignat’ev and I. A. Kokh. Russ. Phys. J. 60, 1079 (2018); arXiv: 1610. 04443.CrossRefGoogle Scholar
  11. 11.
    Yu. Ignat’ev and I. A. Kokh, Russ. Phys. J. 61, 2074 (2018); arXiv: 1610. 04443.Google Scholar
  12. 12.
    Yu. G. IgnatТev and A. R. Samigullina, Russ. Phys. J. 61, 643 (2018).CrossRefGoogle Scholar
  13. 13.
    Yu. Ignat’ev, A. Agathonov, M. Mikhailov, and D. Ignatyev, Astroph. Space Sci. 357, 61 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Kazan Federal UniversityKazanRussia

Personalised recommendations