Advertisement

Gravitation and Cosmology

, Volume 25, Issue 1, pp 24–36 | Cite as

Peculiarities of Cosmological Models Based on a Nonlinear Asymmetric Scalar Doublet with Minimal Interaction. I. Qualitative Analysis

  • Yu. G. Ignat’evEmail author
  • I. A. Kokh
Article
  • 9 Downloads

Abstract

A detailed comparative qualitative analysis is carried out for of the evolution of cosmological models based on a doublet of classical and phantom scalar fields with self-action. Just as in the case of a single scalar field, the phase space of such systems becomes multiply connected, there appear ranges of negative total effective energy unavailable for motion. A distinctive feature of the asymmetrical scalar doublet is the time dependence of prohibited ranges’ projections on the phase subspaces of each field.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. Ignat’ev and A. Agathonov, Russ. Phys. J. 61 (19) (2018) (to be publised); Yu. Ignat’ev, A. Agathonov and I. Kokh, arXiv: 1808. 04570.Google Scholar
  2. 2.
    D. S. Gorbunov and V. A. Rubakov, Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory (World Scientific, Singapore, 2011).CrossRefzbMATHGoogle Scholar
  3. 3.
    V. A. Belinskii, L. P. Grishchuk, Ya. B. Zel’dovich, and I. M. Khalatnikov, Sov. Phys. JETP62, 195–203 (1985).Google Scholar
  4. 4.
    V. M. Zhuravlev, JETP 120, 1042 (2001).Google Scholar
  5. 5.
    L. A. Urena-Lopez and M. J. Reyes-Ibarra, arXiv: 0709. 3996.Google Scholar
  6. 6.
    V. M. Zhuravlev, T. V. Podymova, and E. A. Pereskokov, Grav. Cosmol. 17, 101 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    L. A. Urena-Lopez, arXiv: 1108. 4712.Google Scholar
  8. 8.
    Yu. G. Ignat’ev, Space, Time and Fundamental Interections, 3 (16), 16 (2016); arXiv: 1609. 00745.CrossRefGoogle Scholar
  9. 9.
    Yu. G. Ignat’ev, Space, Time and Fundamental Interections, 3 (16), 37 (2016).CrossRefGoogle Scholar
  10. 10.
    Yu. G. Ignat’ev, Grav. Cosmol. 23, 131 (2017); arXiv: 1609. 00745, arXiv: 1609. 08851.ADSCrossRefGoogle Scholar
  11. 11.
    Yu. G. Ignat’ev and A. R. Samigullina, Russ. Phys. J. 60, 1173 (2017).CrossRefGoogle Scholar
  12. 12.
    Yu. G. Ignat’ev, D. Yu. Ignatyev, and A. R. Samigullina, Grav. Cosmol. 24, 148 (2018); arXiv: 1705. 05000.ADSCrossRefGoogle Scholar
  13. 13.
    V. M. Zhuravlev, Space, Time and Fundamental Interections 4 (17), 39 (2016).CrossRefGoogle Scholar
  14. 14.
    F. Hoyle, Mon. Not. R. Astr. Soc. 109, 365 (1949).ADSCrossRefGoogle Scholar
  15. 15.
    F. Hoyle and J. V. Narlikar, Proc. Roy. Soc. A 282, 191 (1964).ADSGoogle Scholar
  16. 16.
    Yu. G. Ignat’ev, Sov. Phys. J. 26, 1068 (1983).CrossRefGoogle Scholar
  17. 17.
    Yu. G. Ignat’ev and R. R. Kuzeev, Ukr. Phys. J. 29, 1021 (1984).Google Scholar
  18. 18.
    Yu. G. Ignatyev and R. F. Miftakhov, Grav. Cosmol. 12, 179 (2006).ADSGoogle Scholar
  19. 19.
    K. A. Bronnikov and J. C. Fabris, Phys. Rev. Lett. 96, 973 (2006).CrossRefGoogle Scholar
  20. 20.
    S. V. Bolokhov, K. A. Bronnikov, and M. V. Skvortsova, Class. Quantum Grav. 29, 245006 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    Yu. G. Ignat’ev, Russ. Phys. J. 55, 1345 (2013).CrossRefGoogle Scholar
  22. 22.
    James M. Cline, Sangyong Jeon, and Guy D. Moore, Phys. Rev. D 70, 043543 (2004); arXiv: hepph/0311312.ADSCrossRefGoogle Scholar
  23. 23.
    R. Kallosh, J. Kang, A. Linde, and V. Mukhanov, JCAP Physics. 2008. 10. 1088/1475-7516/2008/04/018.Google Scholar
  24. 24.
    S. Nojiri and E. N. Saridakis, Astroph. Space Sci 347, 221 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    F. Sbisa, Eur. J. Phys., 36 (1) (2014).Google Scholar
  26. 26.
    S. Yu. Vernov, Theor. Math. Phys. 166, 392 (2011).CrossRefGoogle Scholar
  27. 27.
    S. M. Carroll, M. Hoffman, and M. Trodden, astroph/0301273.Google Scholar
  28. 28.
    M. Richarte and G. Kremer, European Phys. J. C 77 (2016).Google Scholar
  29. 29.
    A. Tripathi, A. Sangwana, and H. K. Jassal, JCAP 2017, 012 (2017).CrossRefGoogle Scholar
  30. 30.
    Y. Ma, J. Zhang, S. Cao et al., Eur. Phys. J. C 77, 891 (2017).ADSCrossRefGoogle Scholar
  31. 31.
    J. Meyers et al, ApJ 750, 1 (2012).ADSCrossRefGoogle Scholar
  32. 32.
    R. Terlevich et al., MNRAS 451, 3001 (2015).ADSCrossRefGoogle Scholar
  33. 33.
    R. Chavez et al., MNRAS 462, 2431 (2016).ADSCrossRefGoogle Scholar
  34. 34.
    Yu. G. Ignat’ev, Russ. Phys. J. 55, 166 (2012).CrossRefGoogle Scholar
  35. 35.
    Yu. G. Ignat’ev, Russ. Phys. J. 55, 550 (2012).CrossRefGoogle Scholar
  36. 36.
    Yu. G. Ignat’ev, Space, Time and Fundamental Interections 1 (6), 47 (2014).Google Scholar
  37. 37.
    Yu. G. Ignatyev and D. Yu. Ignatyev, Grav. Cosmol. 20, 299 (2014).ADSCrossRefGoogle Scholar
  38. 38.
    Yu. G. Ignatyev, A. A. Agathonov, and D. Yu. Ignatyev, Grav. Cosmol. 20, 304 (2014).ADSCrossRefGoogle Scholar
  39. 39.
    Yu. G. Ignatyev (Ignat’ev), Grav. Cosmol. 21, 296 (2015).ADSCrossRefGoogle Scholar
  40. 40.
    Yu. G. Ignatyev and A. A. Agathonov, Grav. Cosmol. 21, 105 (2015).ADSCrossRefGoogle Scholar
  41. 41.
    Yu. G. Ignat’ev and M. L. Mikhailov, Russ. Phys. J. 57, 1743 (2015).CrossRefGoogle Scholar
  42. 42.
    Yu. Ignat’ev, A. Agathonov, M. Mikhailov, and D. Ignatyev, Astr. Space Sci. 357, 61 (2015).ADSCrossRefGoogle Scholar
  43. 43.
    Yu. G. Ignat’ev and A. A. Agathonov, Space, Time and Fundamental Interections 3 (16), 48 (2016).CrossRefGoogle Scholar
  44. 44.
    Yu Ignat’ev, A. Agathonov, and D. Ignatyev, arXiv:1608. 05020 [gr-qc] (2016).Google Scholar
  45. 45.
    Yu. G. Ignat’ev, A. A. Agathonov and Dmitry Ignatyev, Grav. Cosmol. 24, 1 (2018).ADSCrossRefGoogle Scholar
  46. 46.
    Yu. G. Ignat’ev, Space, Time and Fundamental Interections 1, 79 (2012).Google Scholar
  47. 47.
    Yu. G. Ignat’ev and M. L. Mikhailov, Space, Time and Fundamental Interections. Issue 4 (13), 75 (2015).CrossRefGoogle Scholar
  48. 48.
    Yu. G. Ignat’ev, Russ. Phys. J. 59, 2074 (2017).CrossRefGoogle Scholar
  49. 49.
    Yu. G. Ignat’ev and A. A. Agathonov, Space, Time and Fundamental Interections 4(17), 52 (2016); arXiv: 1610. 04443.Google Scholar
  50. 50.
    Yu. G. Ignat’ev and A. A. Agathonov, Grav. Cosmol. 23, 230 (2017); arXiv: 1610. 04443.ADSCrossRefGoogle Scholar
  51. 51.
    O. I. Bogoyavlensky, Methods of the Qualitative Theory of Dynamic Systems in Astrophysics and Gas Dynamics (Nauka, Moscow, 1980).Google Scholar
  52. 52.
    N. N. Bautin and E. A. Leontovich, Methods and Techniques for the Qualitative Study of Dynamical Systems in the Plane, issue 11 (Series “ReferenceMathematical Library”, Nauka, Moscow, 1989).Google Scholar
  53. 53.
    Yu. G. Ignat’ev and A. A. Agathonov, Space, Time and Fundamental Interections. Issue 2, 36 (2017).CrossRefGoogle Scholar
  54. 54.
    Yu. Ignat’ev and I. A. Kokh. Russ. Phys. J. 60, 2074 (2018)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Kazan Federal UniversityKazanRussia

Personalised recommendations