Advertisement

Gravitation and Cosmology

, Volume 25, Issue 1, pp 75–81 | Cite as

Influence of Linear Plus Quadratic Interactions Between Dark Components of the Universe on Thermodynamics

  • D. Gemici-DeveciEmail author
  • E. AydinerEmail author
Article
  • 16 Downloads

Abstract

We work with the holographic model of interacting dark sector (dark energy plus dark matter) of the universe. The generalized Chaplygin gas model is taken as a Dark Energy (DE) candidate, and it interacts with Cold Dark Matter (CDM) in the framework of linear plus quadratic equation of state (EoS) parameter. We study the effect of interaction on the thermodynamics of the universe. Three interaction parameters of DE-CDM are considered: ΓρDE, ΓρDM, and Γ(ρDE + ρDM). We derive the corresponding effective equation of states for these different interaction parameters and analyze the behaviors of the derivative of entropies for DE, CDM and the apparent horizon, which is considered as a boundary of the universe. For this purpose the Generalized Second Law (GSL) of thermodynamics is used in the Friedman- Robertson-Walker (FRW) space to analyze the effect of quadratic terms on the thermodynamics of the universe, and the results are analyzed and compared with the solution for the linear form given in the literature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Riess et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J. 116, 1009 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    S. Perlmutter et al., “Measurements of Ω and Λ from 42 high-redshift supernovae,” Astroph. J. 517, 565 (1999).ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    C. H. Lineweaver, “Cosmological parameters,” arXiv: ph/0112381.Google Scholar
  4. 4.
    P. J. E. Peebles, and B. Ratra, “The cosmological constant and dark energy,” Rev. Mod. Phys. 75, 559 (2001).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    T. Padmanabhan, “Cosmological constant, the weight of the vacuum,” Phys. Rep. 380, 235 (2003).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    B. Feng, W. Xiulian, and Z. Xinmin, “Dark energy constraints from the cosmic age and supernovae,” Phys. Rev. B 607, 35 (2005).Google Scholar
  7. 7.
    Y. F. Cai, E. N. Saridakis, M. R. Setare, and J. Q. Xia, “Quintom cosmology: theoretical implications and observations,” Phys. Rep. 493, 1 (2010).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    G. Caldera-Cabral, M. Roy, and L. A. Urea˜ -Lo´ pez, “Dynamics of interacting dark energy,” Phys. Rev. D 79, 063518 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    A. Kamenshchik, M. Ugo, and P. Vincent, “An alternative to quintessence,” Phys. Lett. B 265, 511 (2001).Google Scholar
  10. 10.
    S. Wang, W. Yi, and L. Miao, “Holographic dark energy,” arXiv: 1612. 00345. to appear in Phys. Rep.Google Scholar
  11. 11.
    B. Wang, G. Yungui, and A. Elcio, “Transition of the dark energy equation of state in an interacting holographic dark energy model,” Phys. Lett. B 624, 141 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    B. Borah and M. Ansari, “Power-law entropycorrected new holographic dark energy in Brans-Dicke cosmology,” Canadian J. Phys. 93, 475 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    M. A. Zadeh, A. Sheykhi, and H. Moradpour, “Holographic dark energy with the sign-changeable interaction term,” Int. J. Mod. Phys. D 26, 1750080 (2017).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    K. H. Kim, W. L. Hyung and S. M. Yun, “Non-flat universe and interacting dark energy model,” Phys. Lett. B 648, 107 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    K. H. Kim, W. L. Hyung, and S. M. Yun, “Equation of state for an interacting holographic dark energy model,” Phys. Lett. B 632, 605 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    B. Wang, L. Chi-Yong, and A. Elcio, “Constraints on the interacting holographic dark energymodel,” Phys. Lett. B 637, 357 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    M. Li, “A model of holographic dark energy,” Phys. Lett. B 603, 1 (2004).ADSCrossRefGoogle Scholar
  18. 18.
    J. H. He and B. Wang, “Effects of the interaction between dark energy and dark matter on cosmological parameters,” JCAP 2008, 10 (2008).CrossRefGoogle Scholar
  19. 19.
    M. B. Gavela et al., “Dark coupling,” JCAP 2009, 34 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    E. Aydiner, “A new scenario of the universe dynamics with interacting fluids,” arXiv: 1610. 07338.Google Scholar
  21. 21.
    D. G Deveci and E. Aydiner, “Quadratic interaction effect on the dark energy density in the universe,” Chinese Phys. B 26, 1009501 (2017).CrossRefGoogle Scholar
  22. 22.
    J. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D 7, 2333 (1973).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    D. N. Spergel et al., “Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: implications for cosmology,” Astroph. J. Suppl. Ser. 170, 377 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    H. M. Sadjadi, “Generalized second law in a phantom-dominated universe,” gr-qc/0512140.Google Scholar
  25. 25.
    C. Rong-Gen and S. P. Kim, “First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe,” JHEP 2005, 50 (2005).MathSciNetGoogle Scholar
  26. 26.
    U. Debnath, “Holographic dark energy interacting with two fluids and validity of generalized second law of thermodynamics,” Astroph. Space Sci. 337, 503 (2012).ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    A. Chamblin, et al., “Holography, thermodynamics, and fluctuations of charged AdS black holes,” Phys. Rev. D 60, 104026 (1999).ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    M. R. Setare and S. Shafei, “A holographic model of dark energy and the thermodynamics of a nonflat accelerated expanding universe,” JCAP 2006, 11 (2006).CrossRefGoogle Scholar
  29. 29.
    M. Sharif and K. Farida, “Kaluza-Klein cosmology with modified holographic dark energy,” Gen. Rel. Grav. 43, 2885 (2011).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    M. R. Setare, “Holographic Chaplygin gas model,” JCAP 2007, 23 (2007).CrossRefzbMATHGoogle Scholar
  31. 31.
    T. K. Mathew, “Entropy of the holographic dark energy and generalized second law,” arXiv: 1401. 8117.Google Scholar
  32. 32.
    R. R. Caldwell, K. Marc, and N. Weinberg, “Phantom dark energy withω < −1 causes a cosmic doomsday,” Phys. Rev. Lett. 91, 071301 (2003).ADSCrossRefGoogle Scholar
  33. 33.
    H. Ebadi and H. Moradpour, “Thermodynamical description of modified generalized Chaplygin gas model of dark energy,” Int. J. Theor. Phys. 55, 1612 (2016).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of OpticianryAltınbaş UniversityİstanbulTurkey
  2. 2.Institute of Graduate Studies in Sciences, Department of PhysicsIstanbul UniversityIstanbulTurkey

Personalised recommendations