Advertisement

Water Resources

, Volume 47, Issue 1, pp 54–64 | Cite as

Quantitative Analysis and Efficiency Assessment of Floodwater Harvesting System in Arid Region: Case of Touzouz ephemeral stream—Mzab Valley

  • Ali Taleb BahmedEmail author
  • Souad Bouzid-LaghaEmail author
WATER RESOURCES AND THE REGIME OF WATER BODIES
  • 7 Downloads

Abstract

The Mzab Valley is characterized by an arid climate with limited amounts of rainfall. In the context of water scarcity, the Mzab water management system recovers floodwater for irrigation and shallow aquifer recharge during rainy periods to allow its use during dry periods. The Touzouz wadi is one of the tributaries of the Mzab Valley. A part of the Mzab water management system is designed on this wadi to capture floodwater. This study aims to evaluate The Touzouz floodwater harvesting system (TFHS) in floodwater recovery. The Evaluation is performed by simulating the TFHS response to several floods with variable return periods and for three system functioning modes. Obtained results show that the system delivers better efficiency in floodwater harvesting when the channels and infiltration basin work simultaneously, as designed initially. TFHS reaches the efficiency of 100% for return periods of 2, 5 and 10 years and 85% for 20 years. The study confirms the efficiency of the system on harvesting and regulating floodwater to take advantage from intermittent flows of Touzouz stream for palm grove irrigation and aquifer recharge.

Keywords:

floodwater harvesting Mzab water management system floodwater recovery efficiency infiltration basin runoff aquifer recharge 

REFERENCES

  1. 1.
    Achour, M., Note relative aux ressources en eau souterraines de la wilaya de Ghardaïa, Agence nationale des ressources hydriques de Ghardaïa (ANRH), Technical report, 2005.Google Scholar
  2. 2.
    Ait Kaci, S., Etude de réhabilitation de la retenue de Touzouz, Technical report, Tassili Engineering, Direction des ressources en eau de la wilaya de Ghardaïa, 2014.Google Scholar
  3. 3.
    Anubha T., Singh A.K., and Vaishya R.C., SCS CN Runoff estimation for Vindhyachal region using remote sensing and GIS, IJARSG, 2015, vol. 4, no. 1, pp. 1214–1223.CrossRefGoogle Scholar
  4. 4.
    Benmamar, S., Poulard, C., Berreksi, A., Paquier, A., and Sioussiou, R., From the hydraulic system of ancestral M’zab to sustainable urban drainage systems for the management of floods, Proc. of Novatech 2016, 2016.Google Scholar
  5. 5.
    Biazin, B., Sterk, G., Temesgen, M., Abdulkedir, A., and Stroosnijder, L., Rainwater harvesting and management in rainfed agricultural systems in sub-Saharan Africa—A review, Phys. Chem. Earth, 2012, vol. 139, no. 15, pp. 47–48.Google Scholar
  6. 6.
    Body, K., Pluies en Algérie-Analyse fréquentielle et synthèse Régionale. Détermination des paramètres principaux par station et leur répartition spatiale, INRH Constantine, Algeria, 1985.Google Scholar
  7. 7.
    Boutoutaou, D. and Zeggane, H., Méthode de calcul des crues des oueds de l’Algérie, LJEE, 2015, nos. 24–25.Google Scholar
  8. 8.
    Braune, E. and Xu, Y., The role of ground water in sub-Saharan Africa, Groundwater, 2010, vol. 48, no. 2, pp. 229–238.CrossRefGoogle Scholar
  9. 9.
    Casenave, A., Albergel, J., Ribstein, P., and Valentin, C., Transposition des donnees hydrologiques: prédétermination des crues décennales des petits bassins versants, Apports de la simulation de pluie, OR-STOM, 1986.Google Scholar
  10. 10.
    Critchley, W.R.S., Reij, C., and Willcocks, T.J., Indigenous soil and water conservation: a review of the state of knowledge and prospects for building on traditions, Land Degrad. Rehabil., 1994, vol. 5, pp. 293–314.CrossRefGoogle Scholar
  11. 11.
    Custodio, E., Aquifer overexploitation: what does it mean?, Hydrogeol. J., 2002, vol. 10, no. 2, pp. 254–277.CrossRefGoogle Scholar
  12. 12.
    Dubief, J., Essai sur l’hydrologie superficielle au Sahara, Institut de météorologie et de géophysique du globe de l’Algérie, Alger, Algérie, 1953.Google Scholar
  13. 13.
    Fang, X., Thompson, D.B., Cleveland, T.G., Pradhan, P., and Malla, R., Time of Concentration Estimated Using Watershed Parameters Determined by Automated and Manual Methods, J. Irrig. Drain. Eng., 2008, vol. 134, no. 2, pp. 202–211.CrossRefGoogle Scholar
  14. 14.
    Fang, X., Cleveland, T., Garcia, C.A., Thomson, D., and Malla, R., Literature Review on Timing Parameters for Hydrographs, Project Number 0-4696/1, 2005, Texas Dept. of Transportation, Austin, Texas, USA.Google Scholar
  15. 15.
    Farquharson, F.A.K., Meigh, J.R., and Sutcliffe, J.V., Regional flood frequency analysis in arid and semi-arid areas, J. Hydrol., 1992, vol. 138, nos. 3–4, pp. 487–501.CrossRefGoogle Scholar
  16. 16.
    Genxu, W. and Guodong, C., Water resource development and its influence on the environment in arid areas of China—the case of the Hei River basin, J. Arid Environ., 1999, vol. 43, no. 2, pp. 121–131.CrossRefGoogle Scholar
  17. 17.
    Goudjil and Kaci, Gauging of Mzab Wadi Section (El Atteuf), State engineering thesis, National polytechnic school (Algeria), 2009.Google Scholar
  18. 18.
    Grimaldi, S., Petroselli, A., Tauro, F., and Porfiri, M., Time of concentration: a paradox in modern hydrology, Hydrol. Sci. J., 2012, vol. 57, no. 2, pp. 217–228.CrossRefGoogle Scholar
  19. 19.
    Hamdy, A., Ragab, R., Scarascia, and Mugnozza, E., Coping with water scarcity: water saving and increasing water productivity, Irrig. Drain., 2003, vol 52, no. 1, pp. 3–20.CrossRefGoogle Scholar
  20. 20.
    Iratni, N., Modélisation hydrologique de quelques sous bassins versant de la Tafna, Magister Thesis, Université des Sciences et de la technologie d’Oran, 2014, 160 p.Google Scholar
  21. 21.
    Kiprich, Z.P., Time of concentration of small agricultural watersheds, Civ. Eng., 1940, vol. 10, no. 6.Google Scholar
  22. 22.
    Laborde, J.P., Elément d’Hydrologie de Surface, Université de Nice-Sophia Antipolis and Centre national de la recherche scientifique, 2000.Google Scholar
  23. 23.
    Malley, Z.J.U., Kayombo, B., Willcocks, T.J., and Mtakwa, P.W., Ngoro: an indigenous, sustainable and profitable soil, water and nutrient conservation system in Tanzania for sloping land, Soil Till. Res., 2004, vol. 77, pp. 47–58.CrossRefGoogle Scholar
  24. 24.
    Nacer, B., Simulation de l'écoulement dans la palmeraie de Ghardaïa- cas de la crue d’octobre 2008, State engineering thesis, National polytechnic school (Algeria), 2011, 136 p.Google Scholar
  25. 25.
    Gale, I., Neumann, I., Calow, R., Moench, M., The effectiveness of artificial recharge of groundwater: a review: Groundwater Systems and Water Quality Programme, Phase 1 Final Report CR/02/108N, British Geological Survey, 2012, p. 59.Google Scholar
  26. 26.
    Ouled Belkhir, C. and Remini, B., Cleanup and valuation of waters of the aquifer of Mzab Valley (Algeria), J. Water Land Dev., 2016, vol. 2016, no. 29, pp. 23–29.CrossRefGoogle Scholar
  27. 27.
    Oweis, T. and Hachum A., Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa, Agr. Water Manage., 2006, vol. 80, pp. 57–73.CrossRefGoogle Scholar
  28. 28.
    Oweis, T., Prinz, D., and Hachum, A., Water harvesting: indigenous knowledge for the future of the drier environments, Ed. ICARDA, Aleppo, Syria, 2001, 40 p.Google Scholar
  29. 29.
    Pietrusiewicz, I., Cupak, A., Wałęga, A., and Michalec, B., The use of NRCS synthetic unit hydrograph and Wackermann conceptual model in the simulation of a flood wave in an uncontrolled catchment, J. Water Land Dev., 2014, vol. 2016, no. 23, pp. 53–59.CrossRefGoogle Scholar
  30. 30.
    Prinz, D. and Wolfer. S., Traditional techniques of water management to cover future irrigation water demand, Z. f.Bewässerungswirtschaft, 1999, vol. 34, no. 1, pp. 41–60.Google Scholar
  31. 31.
    Reij, C., Turner, S.D., and Kuhlman, T., Soil and Water Conservation in Sub-Saharan Africa: Issues and Options, Rome, Ed. IFAD, 1986.Google Scholar
  32. 32.
    Roche, M.A., Crue de projet de l’oued Mzab à Ghardaïa-Sahara Algérien, Technical report, Bonnard et Gardel (BG), 1996.Google Scholar
  33. 33.
    Rodier, J. and Auvray, C., Estimation des débits de crue décennale pour les petits bassins versants de superficie inférieure à 200 km2 en Afrique Occidentale, 1965, ORSTOM—CIEH.Google Scholar
  34. 34.
    Scanlon, B.R., Keese, K.E., Flint, A.L., Flint, L.E., Gaye, C.B., Edmunds, W.M., and Simmers, I., Global synthesis of groundwater recharge in semiarid and arid regions, Hydrol. Process., 2006, vol. 20, pp. 3335–3370.CrossRefGoogle Scholar
  35. 35.
    Sharifi, S. and Hosseini, S.M., Methodology for identifying the best equations for estimating the time of concentration of watersheds in a particular region, J. Irrig. Drain. Eng., 2011, vol. 137, no. 11, pp. 712–719.CrossRefGoogle Scholar
  36. 36.
    Siegert, C., Socio-economics of water harvesting, Water Harvesting for Improved Agricultural Production, Proc. of the FAO expert consultation, Cairo, Egypt 21–25 Nov, 1993, FAO, Rome, 1994.Google Scholar
  37. 37.
    Voskresensky, K.P., Computation principles of flood hydrographs, Floods and their computation, vol. 1, Proc. of the Leningrad Sympos., IASH-Unesco-WMO, 1967.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2020

Authors and Affiliations

  1. 1.Laboratoire d’Environnement, d’Eau, de Géomécanique et d’Ouvrages (LEEGO), Faculté de Génie Civil, Université des Sciences et de la Technologie Houari Boumediene (USTHB)Bab-EzzouarAlgerAlgeria

Personalised recommendations