Water Resources

, Volume 46, Issue 1, pp 52–58 | Cite as

Organic Matter Transformation in the Conjugate Series of Surface Water in Northern Karelia

  • O. Yu. DrozdovaEmail author
  • S. M. Ilina
  • N. A. Anokhina
  • Yu. A. Zavgorodnyaya
  • V. V. Demin
  • S. A. Lapitskiy


The composition of organic matter in the conjugated series of natural water (soil, bog, creek, and lake water) has been considered. The composition of aliphatic and aromatic carboxylic acids and humic substances has been determined. Humic substances have been found to account for the major portion of dissolved organic carbon (from 28 in lake water to 57% in bog water with weight-averaged molecular masses of the order of 1 kDa); and the amounts of aliphatic and aromatic carboxylic acids, to account for ≤2% of the total concentration of carbon of water-soluble organic compounds. Transformation of dissolved organic matter have been shown to take place in the series of the examined water: the composition and its characteristics have been shown to change; and the share of the fraction with molecular mass <1 kDa, to increase because of photo- and biodegradation of high-molecular organic compounds.


water-soluble organic matter natural waters humic substances 



The field studies were financially supported by the Russian Foundation for Basic Research, project nos. 15-05-05000, 16-05-00542, and 18-05-00162; the analytical studies were supported by the Russian Science Foundation, project no. 14-50-00029.


  1. 1.
    Arinushkina, E.V., Rukovodstvo po khimicheskomu analizu pochv (Guide on Soil Chemical Analyses), Moscow: Mosk. Gos. Univ., 1970.Google Scholar
  2. 2.
    Linnik, P.N. and Nabivanets, B.I., Formy migratsii metallov v presnykh poverkhnostnykh vodakh (Metal Migration Forms in Fresh Surface Waters), Leningrad: Gidrometeoizdat, 1986.Google Scholar
  3. 3.
    Adani, F., Ricca, G., Tambone, F., and Genevini, P., Isolation of the stable fraction, the core of the humic acid, Chemosphere, 2006, vol. 65, no. 8, pp. 1300–1307.CrossRefGoogle Scholar
  4. 4.
    Aiken, G.R., Isolation and concentration techniques for aquatic humic substances, Humic Substances in Soil, Sediment and Water: Geochemistry and Isolation, Aiken G.R., McKnight, D.M., Wershaw, R.L., and MacCarthy, P., Eds., N. Y.: Wiley, 1985, pp. 363−385.Google Scholar
  5. 5.
    Albinet, A., Minero, C., and Vione, D., Photochemical generation of reactive species upon irradiation of rainwater: negligible photoactivity of dissolved organic matter, Sci. Total Environ., 2010, vol. 408, no. 16, pp. 3367–3373.CrossRefGoogle Scholar
  6. 6.
    Battin, T.J., Dissolved organic materials and its optical properties in a blackwater tributary of the upper Orinoco River, Venezuela, Org. Geochem., 1998, vol. 28, pp. 561–569.CrossRefGoogle Scholar
  7. 7.
    Chen, Y., Senesi, N., and Schnitzer, M., Information provided on humic substances by E4/E6 ratios, Soil Sci. Soc. Am. J., 1977, vol. 41, no. 2, pp. 352–358.CrossRefGoogle Scholar
  8. 8.
    Chin, Y.-P., Aiken, G., and O’Loughlin, E., Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances, Environ. Sci. Technol., 1994, vol. 28, pp. 1853–1858.CrossRefGoogle Scholar
  9. 9.
    De Haan, H., Solar UV-light penetration and photodegradation of humic substances in peaty lake water, Limnol. Oceanogr., 1993, vol. 38, no. 5, pp. 1072–1076.CrossRefGoogle Scholar
  10. 10.
    Edzwald, J.K. and Tobiason, J.E., Enhanced coagulation: US requirements and a broader view, Water Sci. Technol., 1999, vol. 40, pp. 63–70.CrossRefGoogle Scholar
  11. 11.
    Guggenberger, G., Christensen, B.T., and Zech, W., Land-use effects on the composition of organic matter in particle-size separates of soil: I. Lignin and carbohydrate signature, Eur. J. Soil Sci., 1994, vol. 45, no. 4, pp. 449–458.CrossRefGoogle Scholar
  12. 12.
    Guo, L., Semiletov, I., Gustafsson, O., Ingri, J., Andersson, P., Dudarev, O., and White, D., Characterization of Siberian Arctic coastal sediments: implications for terrestrial organic carbon export, Global Biogeochem. Cycles, 2004, vol. 18, no. 1. GB1036. doi Google Scholar
  13. 13.
    Hur, J., Williams, M.A., and Schlautman, M.A., Evaluating spectroscopic and chromatographic techniques to resolve dissolved organic matter via end member mixing analysis, Chemosphere, 2006, vol. 63, pp. 387–402.CrossRefGoogle Scholar
  14. 14.
    Ilina, S.M., Lapitskiy, S.A., Alekhin, Y.V., Viers, J., Benedetti, M., and Pokrovsky, O.S., Speciation, size fractionation and transport of trace elements in the continuum soil water–mire–humic lake−river−large oligotrophic lake of a subarctic watershed, Aquat. Geochem., 2016, vol. 22, no. 1, pp. 65−95.CrossRefGoogle Scholar
  15. 15.
    Jaffé, R., Boyer, J.N., Lu, X., Maie, N., Yang, C., Scully, N.M., and Mock, S., Source characterization of dissolved organic matter in a subtropical mangrovedominated estuary by fluorescence analysis, Mar. Chem., 2004, vol. 84, pp. 195–210.CrossRefGoogle Scholar
  16. 16.
    Matilainen, A., Gjessing, E.T., Lahtinen, T., Hed, L., Bhatnagar, A., and Sillanpaa, M., An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment, Chemosphere, 2011, vol. 83, pp. 1431–1442.CrossRefGoogle Scholar
  17. 17.
    Minor, E. and Stephens, B., Dissolved organic matter characteristics within the Lake Superior watershed, Org. Geochem., 2008, vol. 39, pp. 1489–1501.CrossRefGoogle Scholar
  18. 18.
    Oliver, B., Thurman, E., and Malcolm, R., The contribution of humic substances to the acidity of colored natural waters, Geochim. Cosmochim. Acta., 1983, vol. 47, pp. 2031–2035.CrossRefGoogle Scholar
  19. 19.
    Onstad, G.D., Canfield, D.E., Quay, P.D., and Hedges, J.I., Sources of particulate organic matter in rivers from the continental USA: lignin phenol and stable carbon isotope compositions, Geochim. Cosmochim. Acta., 2000, vol. 64, no. 20, pp. 3539–3546.CrossRefGoogle Scholar
  20. 20.
    Pokrovsky, O.S., Shirokova, L.S., Kirpotin, S.N., Audry, S., Viers, J., Dupré, B., Effect of permafrost thawing on organic carbon and trace element colloidal speciation in the thermokarst lakes of western Siberia, Biogeosci., 2011, vol. 8, pp. 565–583.CrossRefGoogle Scholar
  21. 21.
    Prokushkin, A.S., Pokrovsky, O.S., Shirokova, L.S., Korets, M.A., Viers, J., Prokushkin, S.G., Amon, R.M.W., Guggenberger, G., and McDowell, W.H., Sources and the flux pattern of dissolved carbon in rivers of the Yenisey basin draining the Central Siberian Plateau, Environ. Res. Lett., 2011, vol. 6, no. 4, pp. 45212–45225.CrossRefGoogle Scholar
  22. 22.
    Schnitzer M. and Calderoni, G., Some chemical characteristics of paleosol humic acids, Chem. Geol., 1985, vol. 53, no. 3−4, pp. 175–184.CrossRefGoogle Scholar
  23. 23.
    See, J.H. and Bronk, D.A., Changes in C:N ratios and chemical structures of estuarine humic substances during aging, Mar. Chem., 2005, vol. 97, nos. 3−4, pp. 334–346.CrossRefGoogle Scholar
  24. 24.
    Stevenson, F.J., Humus chemistry. Genesis, Composition, Reactions, 2nd Ed., N. Y.: Wiley, 1994.Google Scholar
  25. 25.
    Thorn, K.A., Younger, S.J., and Cox, L.G., Order of functionality loss during photodegradation of aquatic humic substances, J. Environ. Qual., 2010, vol. 39, no. 4, pp. 1416–1428.CrossRefGoogle Scholar
  26. 26.
    Thurman E.M. and Malcolm R.L., Preparative isolation of aquatic humic substances, Environ. Sci. Technol., 1981, vol. 15, no. 4, pp. 463−466.CrossRefGoogle Scholar
  27. 27.
    Town, R.M. and Filella, M., A comprehensive systematic compilation of complexation parameters reported for trace metals in natural waters, Aquat. Sci., 2000, vol. 62, no. 3, pp. 252−295.CrossRefGoogle Scholar
  28. 28.
    Tranvik, L.J., Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content, Microb. Ecol., 1988, vol. 16, no. 3, pp. 311–322.CrossRefGoogle Scholar
  29. 29.
    Tremblay, L. and Benner, R., Microbial contributions to N-immobilization and organic matter preservation in decaying plant detritus, Geochim. Cosmochim. Acta, 2006, vol. 70, no. 1, pp. 133–146.CrossRefGoogle Scholar
  30. 30.
    Twichell, S.C., Meyersa, P.A., and Diester-Haass, L., Significance of high C/N ratios in organic-carbon-rich Neogene sediments under the Benguela Current upwelling system, Org. Geochem., 2002, vol. 33, no. 7, pp. 715–722.CrossRefGoogle Scholar
  31. 31.
    Uyguner, C. and Bekbolet M., Implementation of spectroscopic parameters for practical monitoring of natural organic matter, Desalination, 2005, vol. 176, nos. 1−3, pp. 47–55.CrossRefGoogle Scholar
  32. 32.
    Wang, G.S., Liao C.H., and Wu, F.J., Photodegradation of humic acids in the presence of hydrogen peroxide, Chemosphere, 2001, vol. 42, no. 4, pp. 379–387.CrossRefGoogle Scholar
  33. 33.
    Wilkinson, K.J., Joz-Roland, A., and Buffle, J., Different roles of pedogenic fulvic acids and aquagenic biopolymers on colloid aggregation and stability in freshwaters, Limnol. Oceanogr., 1997, vol. 42, no. 8, pp. 1714−1724.CrossRefGoogle Scholar
  34. 34.
    Wolfe, A.P., Kaushal, S.S., Fulton, J.R., and McKnight, D.M., Spectrofluorescence of sediment humic substances and historical changes of lacustrine organic matter provenance in response to atmospheric nutrient enrichment, Environ. Sci. Technol., 2002, vol. 36, no. 15, pp. 3217–3223.CrossRefGoogle Scholar
  35. 35.
    Zuo, Y. and Jones, R.D., Photochemistry of natural dissolved organic matter in lake and wetland waters−production of carbon monoxide, Water Res., 1997, vol. 31, no. 4, pp. 850–858.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • O. Yu. Drozdova
    • 1
    Email author
  • S. M. Ilina
    • 2
  • N. A. Anokhina
    • 1
  • Yu. A. Zavgorodnyaya
    • 1
  • V. V. Demin
    • 1
  • S. A. Lapitskiy
    • 1
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Bureau of Geological and Mining StudiesOrleanFrance

Personalised recommendations