Advertisement

Dehn Invariant and Scissors Congruence of Flexible Polyhedra

  • Alexander A. GaifullinEmail author
  • Leonid S. Ignashchenko
Article
  • 5 Downloads

Abstract

We prove that the Dehn invariant of any flexible polyhedron in n-dimensional Euclidean space, where n ≥ 3, is constant during the flexion. For n = 3 and 4 this implies that any flexible polyhedron remains scissors congruent to itself during the flexion. This proves the Strong Bellows Conjecture posed by R. Connelly in 1979. It was believed that this conjecture was disproved by V. Alexandrov and R. Connelly in 2009. However, we find an error in their counterexample. Further, we show that the Dehn invariant of a flexible polyhedron in the n-dimensional sphere or n-dimensional Lobachevsky space, where n ≥ 3, is constant during the flexion whenever this polyhedron satisfies the usual Bellows Conjecture, i.e., whenever its volume is constant during every flexion of it. Using previous results of the first named author, we deduce that the Dehn invariant is constant during the flexion for every bounded flexible polyhedron in odd-dimensional Lobachevsky space and for every flexible polyhedron with sufficiently small edge lengths in any space of constant curvature of dimension at least 3.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Alexandrov, “An example of a flexible polyhedron with nonconstant volume in the spherical space,” Beitr. Algebra Geom. 38 (1), 11–18 (1997).MathSciNetzbMATHGoogle Scholar
  2. 2.
    V. Alexandrov, “The Dehn invariants of the Bricard octahedra,” J. Geom. 99 (1–2), 1–13 (2010); arXiv: 0901.2989 [math.MG].MathSciNetzbMATHGoogle Scholar
  3. 3.
    V. Alexandrov and R. Connelly, “Flexible suspensions with a hexagonal equator,” Ill. J. Math. 55 (1), 127–155 (2011); arXiv: 0905.3683 [math.MG].MathSciNetzbMATHGoogle Scholar
  4. 4.
    V. G. Boltianskii, Hilbert’s Third Problem (Nauka, Moscow, 1977; V. H. Winston & Sons, Washington, D.C., 1978), Scripta Ser. Math.Google Scholar
  5. 5.
    R. Bricard, “Mémoire sur la théorie de l’octaèdre articulé,” J. Math. Pures Appl., Sér. 5, 5 (3), 113–148 (1897).zbMATHGoogle Scholar
  6. 6.
    R. Connelly, “An attack on rigidity. I, II,” Preprint (Cornell Univ., New York, 1974), http://www.math.cornell.edu/~connelly/Attack.I.pdf, http://www.math.cornell.edu/~connelly/Attack.II.pdf.Google Scholar
  7. 7.
    R. Connelly, “An attack on rigidity. I, II,” Bull. Am. Math. Soc. 81, 566–569 (1975).MathSciNetzbMATHGoogle Scholar
  8. 8.
    R. Connelly, “A counterexample to the rigidity conjecture for polyhedra,” Publ. Math., Inst. Hautes Étud. Sci. 47, 333–338 (1977).MathSciNetzbMATHGoogle Scholar
  9. 9.
    R. Connelly, “Conjectures and open questions in rigidity,” in Proc. Int. Congr. Math., Helsinki, 1978 (Acad. Sci. Fennica, Helsinki, 1980), Vol. 1, pp. 407–414.Google Scholar
  10. 10.
    R. Connelly, “The rigidity of polyhedral surfaces,” Math. Mag. 52 (5), 275–283 (1979).MathSciNetzbMATHGoogle Scholar
  11. 11.
    R. Connelly, I. Sabitov, and A. Walz, “The bellows conjecture,” Beitr. Algebra Geom. 38 (1), 1–10 (1997).MathSciNetzbMATHGoogle Scholar
  12. 12.
    M. Dehn, “Ueber den Rauminhalt,” Math Ann. 55 (3), 465–478 (1901).MathSciNetzbMATHGoogle Scholar
  13. 13.
    J. L. Dupont, Scissors Congruences, Group Homology and Characteristic Classes (World Scientific, Singapore, 2001), Nankai Tracts Math. 1.zbMATHGoogle Scholar
  14. 14.
    A. A. Gaifullin, “Sabitov polynomials for volumes of polyhedra in four dimensions,” Adv. Math. 252, 586–611 (2014); arXiv: 1108.6014 [math.MG].MathSciNetzbMATHGoogle Scholar
  15. 15.
    A. A. Gaifullin, “Generalization of Sabitov’s theorem to polyhedra of arbitrary dimensions,” Discrete Comput. Geom. 52 (2), 195–220 (2014); arXiv: 1210.5408 [math.MG].MathSciNetzbMATHGoogle Scholar
  16. 16.
    A. A. Gaifullin, “Flexible cross-polytopes in spaces of constant curvature,” Proc. Steklov Inst. Math. 286, 77–113 (2014) [transl. from Tr. Mat. Inst. im. V.A. Steklova 286, 88–128 (2014)].MathSciNetzbMATHGoogle Scholar
  17. 17.
    A. A. Gaifullin, “Embedded flexible spherical cross-polytopes with nonconstant volumes,” Proc. Steklov Inst. Math. 288, 56–80 (2015) [transl. from Tr. Mat. Inst. im. V.A. Steklova288, 67–94 (2015)].MathSciNetzbMATHGoogle Scholar
  18. 18.
    A. A. Gaifullin, “The analytic continuation of volume and the Bellows conjecture in Lobachevsky spaces,” Sb. Math. 206 (11), 1564–1609 (2015) [transl. from Mat. Sb. 206 (11), 61–112 (2015)].MathSciNetzbMATHGoogle Scholar
  19. 19.
    A. A. Gaifullin, “The bellows conjecture for small flexible polyhedra in non-Euclidean spaces,” Moscow Math. J. 17 (2), 269–290 (2017); arXiv: 1605.04568 [math.MG].MathSciNetGoogle Scholar
  20. 20.
    H. Hadwiger, “Ergänzungsgleichheit k-dimensionaler Polyeder,” Math. Z. 55 (3), 292–298 (1952).MathSciNetzbMATHGoogle Scholar
  21. 21.
    H. Hadwiger, “Zum Problem der Zerlegungsgleichheit k-dimensionaler Polyeder,” Math. Ann. 127, 170–174 (1954).MathSciNetzbMATHGoogle Scholar
  22. 22.
    B. Jessen, “The algebra of polyhedra and the Dehn–Sydler theorem,” Math. Scand. 22 (2), 241–256 (1968).MathSciNetzbMATHGoogle Scholar
  23. 23.
    N. H. Kuiper, “Sphères polyédriques flexibles dans E3, d’après Robert Connelly,” in Séminaire Bourbaki 1977/78 (Springer, Berlin, 1979), Exp. 514, Lect. Notes Math. 710, pp. 147–168.Google Scholar
  24. 24.
    I. Kh. Sabitov, “The volume of a polyhedron as a function of its metric,” Fundam. Prikl. Mat. 2 (4), 1235–1246 (1996).MathSciNetzbMATHGoogle Scholar
  25. 25.
    I. Kh. Sabitov, “A generalized Heron–Tartaglia formula and some of its consequences,” Sb. Math. 189 (10), 1533–1561 (1998) [transl. from Mat. Sb. 189 (10), 105–134 (1998)].MathSciNetzbMATHGoogle Scholar
  26. 26.
    I. Kh. Sabitov, “The volume as a metric invariant of polyhedra,” Discrete Comput. Geom. 20 (4), 405–425 (1998).MathSciNetzbMATHGoogle Scholar
  27. 27.
    C.-H. Sah, Hilbert’s Third Problem: Scissors Congruence (Pitman Adv. Publ. Program, San Francisco, 1979), Res. Notes Math. 33.zbMATHGoogle Scholar
  28. 28.
    H. Seifert and W. Threlfall, A Textbook of Topology (Academic, New York, 1980), Pure Appl. Math. 89.zbMATHGoogle Scholar
  29. 29.
    J.-P. Sydler, “Sur la décomposition des polyèdres,” Comment. Math. Helv. 16, 266–273 (1943).MathSciNetzbMATHGoogle Scholar
  30. 30.
    J.-P. Sydler, “Conditions nécessaires et suffisantes pour l’équivalence des polyèdres de l’espace euclidien `a trois dimensions,” Comment. Math. Helv. 40, 43–80 (1965).MathSciNetzbMATHGoogle Scholar
  31. 31.
    H. Whitney, “Elementary structure of real algebraic varieties,” Ann. Math., Ser. 2, 66 (3), 545–556 (1957).MathSciNetzbMATHGoogle Scholar
  32. 32.
    V. B. Zylev, “Equicomposability of equicomplementable polyhedra,” Sov. Math., Dokl. 6, 453–455 (1965) [transl. from Dokl. Akad. Nauk SSSR 161 (3), 515–516 (1965)].zbMATHGoogle Scholar
  33. 33.
    V. B. Zylev, “G-composedness and G-complementability,” Sov. Math., Dokl. 9, 403–404 (1968) [transl. from Dokl. Akad. Nauk SSSR 179 (3), 529–530 (1968)].MathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Alexander A. Gaifullin
    • 1
    • 2
    • 3
    • 4
    Email author
  • Leonid S. Ignashchenko
    • 2
  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia
  2. 2.Faculty of Mechanics and MathematicsMoscow State UniversityMoscowRussia
  3. 3.Skolkovo Institute of Science and TechnologyMoscowRussia
  4. 4.Institute for Information Transmission Problems (Kharkevich Institute)Russian Academy of Sciences, Bol’shoi Karetnyi per. 19MoscowRussia

Personalised recommendations