Microformal Geometry and Homotopy Algebras

  • Th. Th. VoronovEmail author


We extend the category of (super)manifolds and their smooth mappings by introducing a notion of microformal, or “thick,” morphisms. They are formal canonical relations of a special form, constructed with the help of formal power expansions in cotangent directions. The result is a formal category so that its composition law is also specified by a formal power series. A microformal morphism acts on functions by an operation of pullback, which is in general a nonlinear transformation. More precisely, it is a formal mapping of formal manifolds of even functions (bosonic fields), which has the property that its derivative for every function is a ring homomorphism. This suggests an abstract notion of a “nonlinear algebra homomorphism” and the corresponding extension of the classical “algebraic–functional” duality. There is a parallel fermionic version. The obtained formalism provides a general construction of L-morphisms for functions on homotopy Poisson (P) or homotopy Schouten (S) manifolds as pullbacks by Poisson microformal morphisms. We also show that the notion of the adjoint can be generalized to nonlinear operators as a microformal morphism. By applying this to L-algebroids, we show that an L-morphism of L-algebroids induces an L-morphism of the “homotopy Lie–Poisson” brackets for functions on the dual vector bundles. We apply this construction to higher Koszul brackets on differential forms and to triangular L-bialgebroids. We also develop a quantum version (for the bosonic case), whose relation to the classical version is like that of the Schrödinger equation to the Hamilton–Jacobi equation. We show that the nonlinear pullbacks by microformal morphisms are the limits as ħ → 0 of certain “quantum pullbacks,” which are defined as special form Fourier integral operators.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Akman, “On some generalizations of Batalin–Vilkovisky algebras,” J. Pure Appl. Algebra 120 (2), 105–141 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    V. I. Arnol’d, Mathematical Methods of Classical Mechanics, 2nd ed. (Springer, New York, 1989), Grad. Texts Math. 60.CrossRefGoogle Scholar
  3. 3.
    K. Bering, P. H. Damgaard, and J. Alfaro, “Algebra of higher antibrackets,” Nucl. Phys. B 478 (1–2), 459–503 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    A. S. Cattaneo, B. Dherin, and A. Weinstein, “Symplectic microgeometry. I: Micromorphisms,” J. Symplectic Geom. 8 (2), 205–223 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    A. S. Cattaneo, B. Dherin, and A. Weinstein, “Symplectic microgeometry. II: Generating functions,” Bull. Braz. Math. Soc. (N.S.) 42 (4), 507–536 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. S. Cattaneo, B. Dherin, and A. Weinstein, “Symplectic microgeometry. III: Monoids,” J. Symplectic Geom. 11 (3), 319–341 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    A. S. Cattaneo, B. Dherin, and A. Weinstein, “Integration of Lie algebroid comorphisms,” Port. Math. 70 (2), 113–144 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Yu. V. Egorov, “The canonical transformations of pseudodifferential operators,” Usp. Mat. Nauk 24 (5), 235–236 (1969).MathSciNetGoogle Scholar
  9. 9.
    Yu. V. Egorov, “Canonical transformations and pseudodifferential operators,” Tr. Mosk. Mat. Obshch. 24, 3–28 (1971).MathSciNetzbMATHGoogle Scholar
  10. 10.
    Yu. V. Egorov, “Microlocal analysis,” in Partial Differential Equations–4 (VINITI, Moscow, 1988), Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl. 33, pp. 5–156. Engl. transl. in Partial Differential Equations. IV (Springer, Berlin, 1993), Encycl. Math. Sci. 33, pp. 1–147.Google Scholar
  11. 11.
    M. V. Fedoryuk, “The stationary phase method and pseudodifferential operators,” Russ. Math. Surv. 26 (1), 65–115 (1971) [transl. from Usp. Mat. Nauk 26 (1), 67–112 (1971)].MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    V. Fock, “On the canonical transformation in classical and quantum mechanics,” Acta Phys. Acad. Sci. Hung. 27, 219–224 (1969) [rev. transl. from Vestn. Leningr. Univ., Ser. Fiz. Khim., No. 16, 67–70 (1959)].MathSciNetCrossRefGoogle Scholar
  13. 13.
    V. A. Fock, Fundamentals of Quantum Mechanics (Nauka, Moscow, 1976; Mir, Moscow, 1978).Google Scholar
  14. 14.
    A. Grothendieck, “Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas (Quatrième partie),” Publ. Math., Inst. Hautes Étud. Sci. 32, 5–361 (1967).CrossRefzbMATHGoogle Scholar
  15. 15.
    V. Guillemin and S. Sternberg, Geometric Asymptotics (Am. Math. Soc., Providence, RI, 1977), Math. Surv. 14.CrossRefzbMATHGoogle Scholar
  16. 16.
    Ph. J. Higgins and K. C. H. Mackenzie, “Duality for base-changing morphisms of vector bundles, modules, Lie algebroids and Poisson structures,” Math. Proc. Cambridge Philos. Soc. 114 (3), 471–488 (1993).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    L. Hörmander, “The spectral function of an elliptic operator,” Acta Math. 121, 193–218 (1968).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    L. Hörmander, “Fourier integral operators. I,” Acta Math. 127, 79–183 (1971).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    H. M. Khudaverdian and Th. Voronov, “On odd Laplace operators,” Lett. Math. Phys. 62 (2), 127–142 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    H. M. Khudaverdian and Th. Voronov, “On odd Laplace operators. II,” in Geometry, Topology, and Mathematical Physics: S. P. Novikov’s Seminar, 2002–2003, Ed. by V. M. Buchstaber and I. M. Krichever (Am. Math. Soc., Providence, RI, 2004), AMS Transl., Ser. 2, 212, pp. 179–205.Google Scholar
  21. 21.
    H. M. Khudaverdian and Th. Th. Voronov, “Higher Poisson brackets and differential forms,” in Geometric Methods in Physics: Proc. XXVII Workshop, Bialowieza, Poland, 2008 (Am. Inst. Phys., Melville, NY, 2008), AIP Conf. Proc. 1079, pp. 203–215.Google Scholar
  22. 22.
    H. Khudaverdian and Th. Voronov, “Thick morphisms, higher Koszul brackets, and L∞-algebroids,” arXiv: 1808.10049 [math.DG].Google Scholar
  23. 23.
    M. Kontsevich, “Deformation quantization of Poisson manifolds,” Lett. Math. Phys. 66 (3), 157–216 (2003); arXiv: q-alg/9709040.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    J.-L. Koszul, “Crochet de Schouten–Nijenhuis et cohomologie,” inElie Cartan et les mathématiques d’aujourd’hui (The Mathematical Heritage of Élie Cartan), Lyon, 1984 (Soc. Math. France, Paris, 1985), Astérisque, Numéro Hors Sér., pp. 257–271.Google Scholar
  25. 25.
    T. Lada and J. Stasheff, “Introduction to sh Lie algebras for physicists,” Int. J. Theor. Phys. 32 (7), 1087–1103 (1993).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    K. C. H. Mackenzie, “On certain canonical diffeomorphisms in symplectic and Poisson geometry,” in Quantization, Poisson Brackets and Beyond: LMS Reg. Meet. Workshop, Manchester, 2001 (Am. Math. Soc., Providence, RI, 2002), Contemp. Math. 315, pp. 187–198.Google Scholar
  27. 27.
    K. C. H. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids (Cambridge Univ. Press, Cambridge, 2005), LMS Lect. Note Ser. 213.CrossRefzbMATHGoogle Scholar
  28. 28.
    K. C. H. Mackenzie and P. Xu, “Lie bialgebroids and Poisson groupoids,” Duke Math. J. 73 (2), 415–452 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    V. P. Maslov, Perturbation Theory and Asymptotic Methods (Izd. Mosk. Gos. Univ., Moscow, 1965) [in Russian].Google Scholar
  30. 30.
    I. R. Shafarevich, “Basic notions of algebra,” in Algebra–1 (VINITI, Moscow, 1986), Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl. 11, pp. 5–279. Engl. transl.: Algebra. I: Basic Notions of Algebra (Springer, Berlin, 1990), Encycl. Math. Sci. 11.Google Scholar
  31. 31.
    M. A. Shubin, Pseudodifferential Operators and Spectral Theory (Nauka, Moscow, 1978; Springer, Berlin, 2001).zbMATHGoogle Scholar
  32. 32.
    F. Trèves, Introduction to Pseudodifferential and Fourier Integral Operators (Plenum Press, New York, 1980), Vol. 2.CrossRefzbMATHGoogle Scholar
  33. 33.
    W. M. Tulczyjew, “A symplectic formulation of particle dynamics,” in Differential Geometrical Methods in Mathematical Physics: Proc. Symp., Bonn, 1975 (Springer, Berlin, 1977), Lect. Notes Math. 570, pp. 457–463.Google Scholar
  34. 34.
    M. I. Vishik and G. I. Eskin, “Equations in convolutions in a bounded region,” Russ. Math. Surv. 20 (3), 85–151 (1965) [transl. from Usp. Mat. Nauk 20 (3), 89–152 (1965)].CrossRefzbMATHGoogle Scholar
  35. 35.
    Th. Th. Voronov, “Class of integral transforms induced by morphisms of vector bundles,” Math. Notes 44 (6), 886–896 (1988) [transl. from Mat. Zametki 44 (6), 735–749 (1988)].MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Th. Voronov, “Graded manifolds and Drinfeld doubles for Lie bialgebroids,” in Quantization, Poisson Brackets and Beyond: LMS Reg. Meet. Workshop, Manchester, 2001 (Am. Math. Soc., Providence, RI, 2002), Contemp. Math. 315, pp. 131–168.CrossRefGoogle Scholar
  37. 37.
    Th. Voronov, “Higher derived brackets and homotopy algebras,” J. Pure Appl. Algebra 202 (1–3), 133–153 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Th. Th. Voronov, “Q-manifolds and higher analogs of Lie algebroids,” in XXIX Workshop on Geometric Methods in Physics, Bialowie˙za, Poland, 2010 (Am. Inst. Phys., Melville, NY, 2010), AIP Conf. Proc. 1307, pp. 191–202.Google Scholar
  39. 39.
    Th. Th. Voronov, “On a non-Abelian Poincaré lemma,” Proc. Am. Math. Soc. 140 (8), 2855–2872 (2012).CrossRefzbMATHGoogle Scholar
  40. 40.
    Th. Th. Voronov, “Q-manifolds and Mackenzie theory,” Commun. Math. Phys. 315 (2), 279–310 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Th. Voronov, “Quantum microformal morphisms of supermanifolds: an explicit formula and further properties,” arXiv: 1512.04163 [math-ph].Google Scholar
  42. 42.
    Th. Th. Voronov, “Thick morphisms of supermanifolds and oscillatory integral operators,” Russ. Math. Surv. 71 (4), 784–786 (2016) [transl. from Usp. Mat. Nauk 71 (4), 187–188 (2016)].MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Th. Th. Voronov, “On volumes of classical supermanifolds,” Sb. Math. 207 (11), 1512–1536 (2016) [transl. from Mat. Sb. 207 (11), 25–52 (2016)].MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Th. Th. Voronov, “‘Nonlinear pullbacks’ of functions and L∞-morphisms for homotopy Poisson structures,” J. Geom. Phys. 111, 94–110 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    A. Weinstein, “Symplectic structures on Banach manifolds,” Bull. Am. Math. Soc. 75, 1040–1041 (1969).MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    A. Weinstein, “Symplectic manifolds and their Lagrangian submanifolds,” Adv. Math. 6, 329–346 (1971).MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    A. Weinstein, “Symplectic geometry,” Bull. Am. Math. Soc. (N.S.) 5 (1), 1–13 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    A. Weinstein, “The symplectic “category”,” in Differential Geometric Methods in Mathematical Physics: Proc. Int. Conf., Clausthal, 1980 (Springer, Berlin, 1982), Lect. Notes Math. 905, pp. 45–51.CrossRefGoogle Scholar
  49. 49.
    A. Weinstein, “Coisotropic calculus and Poisson groupoids,” J. Math. Soc. Japan 40 (4), 705–727 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    A. Weinstein, “Symplectic categories,” Port. Math. 67 (2), 261–278 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    A. Weinstein, “A note on the Wehrheim–Woodward category,” J. Geom. Mech. 3 (4), 507–515 (2011).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.School of MathematicsUniversity of ManchesterManchesterUK
  2. 2.Faculty of PhysicsTomsk State UniversityTomskRussia

Personalised recommendations