Advertisement

Cobordisms, Manifolds with Torus Action, and Functional Equations

  • V. M. Buchstaber
Article

Abstract

The paper is devoted to applications of functional equations to well-known problems of compact torus actions on oriented smooth manifolds. These include the problem of Hirzebruch genera of complex cobordism classes that are determined by complex, almost complex, and stably complex structures on a fixed manifold. We consider actions with connected stabilizer subgroups. For each such action with isolated fixed points, we introduce rigidity functional equations. This is based on the localization theorem for equivariant Hirzebruch genera. We consider actions of maximal tori on homogeneous spaces of compact Lie groups and torus actions on toric and quasitoric manifolds. The arising class of equations contains both classical and new functional equations that play an important role in modern mathematical physics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Batyrev, “Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties,” J. Algebr. Geom. 3 (3), 493–535 (1994).MathSciNetzbMATHGoogle Scholar
  2. 2.
    A. Borel and F. Hirzebruch, “Characteristic classes and homogeneous spaces. I,” Am. J. Math. 80 (2), 458–538 (1958).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A. Borel and F. Hirzebruch, “Characteristic classes and homogeneous spaces. II,” Am. J. Math. 81 (2), 315–382 (1959).MathSciNetCrossRefGoogle Scholar
  4. 4.
    V. M. Bukhshtaber, “Functional equations associated with addition theorems for elliptic functions and twovalued algebraic groups,” Russ. Math. Surv. 45 (3), 213–215 (1990) [transl. from Usp. Mat. Nauk 45 (3), 185–186 (1990)].MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    V. M. Buchstaber, “Complex cobordism and formal groups,” Russ. Math. Surv. 67 (5), 891–950 (2012) [transl. from Usp. Mat. Nauk 67 (5), 111–174 (2012)].MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    V. M. Buchstaber and E. Yu. Bunkova, “Manifolds of solutions for Hirzebruch functional equations,” Proc. Steklov Inst. Math. 290, 125–137 (2015) [transl. from Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 290, 136–148 (2015)].MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    V. M. Buchstaber, G. Felder, and A. P. Veselov, “Elliptic Dunkl operators, root systems, and functional equations,” Duke Math. J. 76 (3), 885–911 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    V. M. Bukhshtaber and I. M. Krichever, “Vector addition theorems and Baker–Akhiezer functions,” Theor. Math. Phys. 94 (2), 142–149 (1993) [transl. from Teor. Mat. Fiz. 94 (2), 200–212 (1993)].MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    V. M. Buchstaber and E. Yu. Netay, “CP(2)-multiplicative Hirzebruch genera and elliptic cohomology,” Russ. Math. Surv. 69 (4), 757–759 (2014) [transl. from Usp. Mat. Nauk 69 (4), 181–182 (2014)].CrossRefzbMATHGoogle Scholar
  10. 10.
    V. M. Buhštaber and S. P. Novikov, “Formal groups, power systems and Adams operators,” Math. USSR, Sb. 13 (1), 80–116 (1971) [transl. from Mat. Sb. 84 (1), 81–118 (1971)].CrossRefGoogle Scholar
  11. 11.
    V. M. Buchstaber and T. E. Panov, Torus Actions in Topology and Combinatorics (MTsNMO, Moscow, 2004) [in Russian].zbMATHGoogle Scholar
  12. 12.
    V. M. Buchstaber and T. E. Panov, Toric Topology (Am. Math. Soc., Providence, RI, 2015), Math. Surv. Monogr. 204.CrossRefzbMATHGoogle Scholar
  13. 13.
    V. Buchstaber, T. Panov, and N. Ray, “Toric genera,” Int. Math. Res. Not. 2010 (16), 3207–3262 (2010); arXiv: 0908.3298 [math.AT].MathSciNetzbMATHGoogle Scholar
  14. 14.
    V. M. Bukhshtaber and N. Ray, “Toric manifolds and complex cobordisms,” Russ. Math. Surv. 53 (2), 371–373 (1998) [transl. from Usp. Mat. Nauk 53 (2), 139–140 (1998)].MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    V. M. Buchstaber and N. Ray, “The universal equivariant genus and Krichever’s formula,” Russ. Math. Surv. 62 (1), 178–180 (2007) [transl. from Usp. Mat. Nauk 62 (1), 195–196 (2007)].MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    V. M. Buchstaber and S. Terzić, “Equivariant complex structures on homogeneous spaces and their cobordism classes,” in Geometry, Topology, and Mathematical Physics: S. P. Novikov’s Seminar, 2006–2007 (Am. Math. Soc., Providence, RI, 2008), AMS Transl., Ser. 2, 224, pp. 27–57; arXiv: 0801.3108 [math.AT].CrossRefGoogle Scholar
  17. 17.
    V. M. Buchstaber and S. Terzić, “Toric genera of homogeneous spaces and their fibrations,” Int. Math. Res. Not. 2013 (6), 1324–1403 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    V. M. Buchstaber and S. Terzić, “Toric topology of the complex Grassmann manifolds,” arXiv: 1802.06449v2 [math.AT].Google Scholar
  19. 19.
    V. M. Bukhshtaber and A. P. Veselov, “Dunkl operators, functional equations, and transformations of elliptic genera,” Russ. Math. Surv. 49 (2), 145–147 (1994) [transl. from Usp. Mat. Nauk 49 (2), 147–148 (1994)].MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    V. M. Buchstaber and A. P. Veselov, “On a remarkable functional equation in the theory of generalized Dunkl operators and transformations of elliptic genera,” Math. Z. 223 (4), 595–607 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    E. Yu. Bunkova, “Hirzebruch functional equation: Classification of solutions,” Proc. Steklov Inst. Math. 302, 33–47 (2018) [transl. from Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 302, 41–56 (2018)].Google Scholar
  22. 22.
    P. E. Conner and E. E. Floyd, Differentiable Periodic Maps (Academic, New York, 1964), Ergeb. Math. Grenzgeb., Neue Flg. 33.CrossRefzbMATHGoogle Scholar
  23. 23.
    M. W. Davis and T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions,” Duke Math. J. 62 (2), 417–451 (1991).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    J. J. Duistermaat and G. J. Heckman, “On the variation in the cohomology of the symplectic form of the reduced phase space,” Invent. Math. 69, 259–268 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    P. Etingof, G. Felder, X. Ma, and A. Veselov, “On elliptic Calogero–Moser systems for complex crystallographic reflection groups,” J. Algebra 329, 107–129 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    S. M. Gusein-Zade, “U-actions of a circle and fixed points,” Math. USSR, Izv. 5 (5), 1127–1143 (1971) [transl. from Izv. Akad. Nauk SSSR, Ser. Mat. 35 (5), 1120–1136 (1971)].CrossRefzbMATHGoogle Scholar
  27. 27.
    S. M. Gusein-Zade, “On the action of a circle on manifolds,” Math. Notes 10 (5), 731–734 (1971) [transl. from Mat. Zametki 10 (5), 511–518 (1971)].MathSciNetCrossRefGoogle Scholar
  28. 28.
    Harish-Chandra, “Differential operators on a semisimple Lie algebra,” Am. J. Math. 79 (1), 87–120 (1957).MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    L. Hille and H. Skarke, “Reflexive polytopes in dimension 2 and certain relations in SL2(Z),” J. Algera Appl. 1 (2), 159–173 (2002).CrossRefzbMATHGoogle Scholar
  30. 30.
    F. Hirzebruch, Topological Methods in Algebraic Geometry, 3rd ed. (Springer, Berlin, 1966).CrossRefzbMATHGoogle Scholar
  31. 31.
    F. Hirzebruch, T. Berger, and R. Jung, Manifolds and Modular Forms (Vieweg, Braunschweig, 1992), Aspects Math. E20.CrossRefzbMATHGoogle Scholar
  32. 32.
    C. Itzykson and J.-B. Zuber, “The planar approximation. II,” J. Math. Phys. 21 (3), 411–421 (1980).MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    M. Kreuzer and H. Skarke, “Classification of reflexive polyhedra in three dimensions,” Adv. Theor. Math. Phys. 2 (4), 853–871 (1998); arXiv: hep-th/9805190v1.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    M. Kreuzer and H. Skarke, “Complete classification of reflexive polyhedra in four dimensions,” Adv. Theor. Math. Phys. 4 (6), 1209–1230 (2000); arXiv: hep-th/0002240v1.MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    I. M. Kričever, “Formal groups and the Atiyah–Hirzebruch formula,” Math. USSR, Izv. 8 (6), 1271–1285 (1974) [transl. from Izv. Akad. Nauk SSSR, Ser. Mat. 38 (6), 1289–1304 (1974)].CrossRefGoogle Scholar
  36. 36.
    I. M. Krichever, “Elliptic solutions of the Kadomtsev–Petviashvili equation and integrable systems of particles,” Funct. Anal. Appl. 14 (4), 282–290 (1980) [transl. from Funkts. Anal. Prilozh. 14 (4), 45–54 (1980)].CrossRefzbMATHGoogle Scholar
  37. 37.
    I. M. Krichever, “Generalized elliptic genera and Baker–Akhiezer functions,” Math. Notes 47 (2), 132–142 (1990) [transl. from Mat. Zametki 47 (2), 34–45 (1990)].MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    A. A. Kustarev, “Equivariant almost complex structures on quasi-toric manifolds,” Russ. Math. Surv. 64 (1), 156–158 (2009) [transl. from Usp. Mat. Nauk 64 (1), 153–154 (2009)].MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    A. A. Kustarev, “Equivariant almost complex structures on quasitoric manifolds,” Proc. Steklov Inst. Math. 266, 133–141 (2009) [transl. from Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 266, 140–148 (2009)].MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    I. Yu. Limonchenko, Z. Lü, and T. E. Panov, “Calabi–Yau hypersurfaces and SU-bordism,” Proc. Steklov Inst. Math. 302, 270–278 (2018) [transl. from Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 302, 287–295 (2018)].Google Scholar
  41. 41.
    J. Milnor, “On the cobordism ring Ω and a complex analogue. I,” Am. J. Math. 82 (3), 505–521 (1960).MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    S. P. Novikov, “Some problems in the topology of manifolds connected with the theory of Thom spaces,” Sov. Math., Dokl. 1, 717–720 (1960) [transl. from Dokl. Akad. Nauk SSSR 132 (5), 1031–1034 (1960)].MathSciNetzbMATHGoogle Scholar
  43. 43.
    S. P. Novikov, “Homotopy properties of Thom complexes,” Mat. Sb. 57 (4), 407–442 (1962).MathSciNetGoogle Scholar
  44. 44.
    S. P. Novikov, “The methods of algebraic topology from the viewpoint of cobordism theory,” Math. USSR, Izv. 1 (4), 827–913 (1967) [transl. from Izv. Akad. Nauk SSSR, Ser. Mat. 31 (4), 855–951 (1967)].CrossRefzbMATHGoogle Scholar
  45. 45.
    S. P. Novikov, “Adams operators and fixed points,” Math. USSR, Izv. 2 (6), 1193–1211 (1968) [transl. from Izv. Akad. Nauk SSSR, Ser. Mat. 32 (6), 1245–1263 (1968)].CrossRefzbMATHGoogle Scholar
  46. 46.
    S. P. Novikov, “Topology,” in Topology–1 (VINITI, Moscow, 1986), Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl. 12, pp. 5–252. Engl. transl. in Topology I: General Survey (Springer, Berlin, 1996), Encycl. Math. Sci. 12, pp. 1–319.Google Scholar
  47. 47.
    S. P. Novikov, “Topology in the 20th century: A view from the inside,” Russ. Math. Surv. 59 (5), 803–829 (2004) [transl. from Usp. Mat. Nauk 59 (5), 3–28 (2004)].MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    S. Ochanine, “Sur les genres multiplicatifs définis par des intégrales elliptiques,” Topology 26 (2), 143–151 (1987).MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    A. V. Pukhlikov and A. G. Khovanskii, “A Riemann–Roch theorem for integrals and sums of quasipolynomials over virtual polytopes,” St. Petersburg Math. J. 4 (4), 789–812 (1993) [transl. from Algebra Anal. 4 (4), 188–216 (1992)].MathSciNetzbMATHGoogle Scholar
  50. 50.
    R. E. Stong, Notes on Cobordism Theory (Princeton Univ. Press, Princeton, NJ, 1968), Math. Notes.zbMATHGoogle Scholar
  51. 51.
    R. Thom, “Quelques propriétés globales des variétés différentiables,” Comment. Math. Helv. 28, 17–86 (1954).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations