Advertisement

Thermal Engineering

, Volume 65, Issue 13, pp 952–968 | Cite as

Quantum-Mechanical Theory of Elastic Scattering and Cross Section Determination of Particle Interactions in Plasma

  • Nguyen-Kuok ShiEmail author
Article
  • 4 Downloads

Abstract

A quantum-mechanical description of the theory of elastic scattering and a technique for determining the cross sections of particle interactions in plasma are described. An asymptotic solution of the Schrödinger equation for the elastic interaction of plasma particles is presented. Algorithms for determining phase shifts based on the Modified Effective Range Theory (MERT) are given. The Born approximation is considered to determine the amplitude of the scattered waves and the scattering cross section of the particles. Data are presented on the cross sections for scattering of electrons by atoms and ions in argon.

Keywords

Schrodinger equation scattered wave phase shift elastic scattering differential cross section Born approximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. O. Thurston, Gaseous Electronics Theory and Practice (CRC, Canada, 2006).Google Scholar
  2. 2.
    J. J. Sakurai and J. J. Napolitano, Modern Quantum Mechanics (Cambridge Univ. Press, Cambridge, 2010).zbMATHGoogle Scholar
  3. 3.
    S. Gasiorowicz, Quantum Physics (Wiley, New York, 2003).zbMATHGoogle Scholar
  4. 4.
    S. J. Buckman and J. Mitroy, “Analysis of low-energy electron scattering cross sections via effective-range theory,” J. Phys. B: At., Mol. Opt. Phys. 22, 1365 (1989).CrossRefGoogle Scholar
  5. 5.
    S. J. Buckman and B. Lohmamn, “The total cross section for low-energy electron scattering from krypton,” J. Phys. B: At. Mol. Phys. 20, 5807 (1987).CrossRefGoogle Scholar
  6. 6.
    J. Ferch, et al., “Electron-argon total cross section measurements at low energies by time-of-flight spectroscopy,” J. Phys. B: At. Mol. Phys. 18, 967 (1985).CrossRefGoogle Scholar
  7. 7.
    G. N. Haddad and T. F. O’Malley, “Scattering cross sections in argon from electron transport parameters,” Aust. J. Phys. 35, 35 (1982).CrossRefGoogle Scholar
  8. 8.
    R. S. Devoto, “Transport coefficients of partially ionized argon,” Phys. Fluids 10, 354–364 (1967).CrossRefGoogle Scholar
  9. 9.
    R. S. Devoto, “Transport properties of ionized monatomic gases,” Phys. Fluids 9, 1230 (1966).CrossRefGoogle Scholar
  10. 10.
    S. Hassanpour and S. Nguyen-Kuok, “Calculation of average collision cross sections of low energy for elastic e-Ar scattering Using MERT4,” J. Plasma Phys. 81, 905810102 (2015).CrossRefGoogle Scholar
  11. 11.
    C. Gibson, R. J. Gulley, J. P. Sullivan, et al., “Elastic electron scattering from argon at low incident energies,” J. Phys. B: At., Mol. Opt. Phys. 29, 3177 (1996).CrossRefGoogle Scholar
  12. 12.
    M. Weyhreter, et al., “Measurements of differential cross sections for e-Ar, Kr, Xe scattering at E = 0.05-2 eV,” Z. Phys. D: At., Mol. Clusters 7, 333 (1988).CrossRefGoogle Scholar
  13. 13.
    S. Nguyen-Kuok, Theory of Low-Temperature Plasma Physics. Atomic, Optical, and Plasma Physics (Springer-Verlag, Cham, Switzerland, 2017).zbMATHGoogle Scholar
  14. 14.
    S. J. Buckman and M. J. Brunger, “A critical comparison of electron scattering cross sections measured by single collision and swarm techniques,” Aust. J. Phys. 50, 483 (1997).CrossRefGoogle Scholar
  15. 15.
    F. R. Meeks, et al., “On the quantum cross sections in dilute gases,” J. Chem. Phys. 100, 3813 (1994).CrossRefGoogle Scholar
  16. 16.
    B. Plenkiewicz, P. Plenkiewicz, and J. P. Jay-Gerin, “Pseudopotential calculations for elastic scattering of slow electrons (0–20 eV) from noble gases. I. Argon,” Phys. Rev. A 38, 4460 (1988).CrossRefGoogle Scholar
  17. 17.
    C. Gibson, R. J. Gulley, J. P. Sullivan, et al., “Elastic electron scattering from argon at low incident energies,” J. Phys. B: At., Mol. Opt. Phys. 29, 3177 (1996).CrossRefGoogle Scholar
  18. 18.
    V. Rat, et al., “Transport properties in a two temperature plasma: Theory and application,” Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 64, 026409 (2001).CrossRefGoogle Scholar
  19. 19.
    V. Rat, P. Andre, J. Aubreton, et al., “A modified pseudo-equilibrium model competing with kinetic models to determine the composition of a two-temperature SF6 atmosphere plasma,” J. Phys. D: Appl. Phys. 34, 2191–2204 (2001).CrossRefGoogle Scholar
  20. 20.
    V. Rat, et al., “Transport coefficients including diffusion in a two-temperature argon plasma,” J. Phys. D: Appl. Phys. 35, 981–991 (2002).CrossRefGoogle Scholar
  21. 21.
    K. L. Bell, N. S. Scott, and M. A. Lennon, “The scattering of low-energy electrons by argon atoms,” J. Phys. B: At. Mol. Phys. 17, 4757 (1984).CrossRefGoogle Scholar
  22. 22.
    T. K. Bose, D. Kannappan, and R. V. Seeniraj, Warme Sioffubertragung 19, 3 (1985).CrossRefGoogle Scholar
  23. 23.
    R. Panajotovic, D. Filipovic, B. Marinkovic, et al., “Critical minima in elastic electron scattering by argon,” J. Phys. B: At., Mol. Opt. Phys. 30, 5877 (1997).CrossRefGoogle Scholar
  24. 24.
    S. N. Nahar and J. M. Wadehra, “Elastic scattering of positrons and electrons by argon,” Phys. Rev. A 35, 2051 (1987).CrossRefGoogle Scholar
  25. 25.
    J. M. Wadehra and S. N. Nahar, “Contributions of higher partial waves to the elastic scattering amplitude for various long-range interactions,” Phys. Rev. A 36, 1458 (1987).CrossRefGoogle Scholar
  26. 26.
    Y. At. Itikawa, “Momentum-transfer cross sections for electron collisions with atoms and molecules,” At. Data Nucl. Data Tables. 14, 1–10 (1974).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.National Research University Moscow Power Engineering Institute (NRU MPEI)MoscowRussia

Personalised recommendations