Thermal Engineering

, Volume 65, Issue 13, pp 1019–1023 | Cite as

On Calculation of the Ignition Voltage for a Back-Arc Discharge in a High-Voltage Thermionic Diode

  • E. V. Onufrieva
  • V. V. OnufrievEmail author
  • Yu. M. Grishin
  • N. I. Sidnyaev
  • V. V. Sinyavsky
  • A. B. Ivashkin


Development of large spacecraft propulsion units involves the creation of high-temperature radiation-resistant systems for current conversion based on thermionic devices of plasma electric power engineering, such as grid-controlled switches and high-voltage plasma thermionic diodes (HVPTD). The current conversion system (CCS) is required to match the electrical parameters of a thermionic conversion power reactor (with an output voltage of 120–150 V) with the parameters of the electric jet engine (having a working voltage of hundreds or thousands of volts). This brings about an urgent issue of calculating the ignition voltage for the back-arc discharge in the interelectrode gap (IEG) of HVPTDs. A semiempirical correlation is proposed for predicting the back-arc discharge ignition voltage as a function of the cesium vapor pressure in IEG and the anode temperature. It can be used by designers of thermionic plasma power engineering devices.


interelectrode gap high-voltage plasma thermionic diode electrical field strength back-arc discharge ignition voltage vapor pressure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. G. Ostrovskii, V. V. Sinyavskii, and Yu. I. Sukhov, “Nuclear-electric interorbital tug Gerkules with a thermionic nuclear power plant,” Kosmonavtika i Raketostroenie, No. 2 (87), 68–74 (2016).Google Scholar
  2. 2.
    V. V. Onufriev, S. D. Grishin, M. K. Marakhtanov, and V. V. Sinyavskii, “Selecting the current conversion system parameters in large-capacity space nuclear power installations,” At. Energiya 89 (1), 78–81 (2000).Google Scholar
  3. 3.
    Yu. G. Gusev and A. V. Pil’nikov, “The role and place of electric jet thrusters in the Russian Space Program,” Trudy MAI electronic journal, Issue 60,
  4. 4.
    S. D. Grishin, L. V. Leskov, and N. P. Kozlov, Electric Jet Thrusters (Mashinostroenie, Moscow, 1975) [in Russian]Google Scholar
  5. 5.
    E. V. Onufrieva, V. V. Sinyavskii, and V. V. Onufriev, “High-temperature current conversion systems of advanced space power propulsion installations,” Izv. Ross. Akad. Nauk, Energetika, No. 4, 137–144 (2009).Google Scholar
  6. 6.
    V. V. Sinyavskii, “Nuclear power solutions in the nearearth space,” Zemlya i Vselennaya, No. 3, 36–47 (2015).Google Scholar
  7. 7.
    V. V. Onufriev and S. D. Grishin, “Experimental investigation of electrical strength to inverse arc breakdown of a thermionic diode with cesium filling,” Teplofiz. Vys. Temp. 34 (3), 482–485 (1996).Google Scholar
  8. 8.
    V. V. Onufriev, “The results of investigations of high temperature high voltage thermion diode,” in Proceedings of the Intern. Energy Conversion Engin. Conf. (IECEC 2000) (Las Vegas, NV, 2000), pp. 290–296.Google Scholar
  9. 9.
    V. V. Onufriev and A. I. Loshkarev, “Striking of inverse arc discharge in a cesium thermionic diode,” Vestnik MGTU, Estestv. Nauki, No. 2, 90–102 (2003).Google Scholar
  10. 10.
    V. V. Onufriev and A. I. Loshkarev, “Striking of inverse arc discharge in a barium thermionic diode,” Vestnik MGTU, Estestv. Nauki, No. 1, 72–77 (2005).Google Scholar
  11. 11.
    E. V. Onufrieva, V. V. Onufriev, Yu. M. Grishin, N. I. Sidnyaev, V. V. Sinyavskii, and A. B. Ivashkin, “On calculating the characteristics of discharge in a high-voltage plasma thermionic diode in the inverse current mode,” Izv. Ross. Akad. Nauk, Energetika, No. 6, 87–96 (2017).Google Scholar
  12. 12.
    V. L. Granovskii, Electric Current in Gas. Steady-State Current (Nauka, Moscow, 1971) [in Russian].Google Scholar
  13. 13.
    Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 2009) [in Russian].Google Scholar
  14. 14.
    J. O. Hirschfelder, C. F. Curtis, and D. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York; Chapman & Hall, London, 1954).zbMATHGoogle Scholar
  15. 15.
    R. H. Davies, E. A. Mason, and R. J. Munn, “High-temperature transport properties of alkali metal vapors,” The Physics of Fluids 5 (3), 444–452 (1965).CrossRefGoogle Scholar
  16. 16.
    G. A. Lyubimov, “Electrode layers with a sharp change in potential at hot electrodes (a review),” Teplofiz. Vys. Temp. 4 (1), 120–132 (1996).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • E. V. Onufrieva
    • 2
  • V. V. Onufriev
    • 2
    Email author
  • Yu. M. Grishin
    • 2
  • N. I. Sidnyaev
    • 2
  • V. V. Sinyavsky
    • 1
  • A. B. Ivashkin
    • 2
  1. 1.Korolev Rocket and Space Corporation Energia (RSC Energia)KorolevRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations