Advertisement

Thermal Engineering

, Volume 65, Issue 13, pp 986–993 | Cite as

An Ion Thruster Accelerating Electrode Made of Carbon-Carbon Composite Material

  • R. V. AkhmetzhanovEmail author
  • V. V. Balashov
  • Ye. A. Bogachev
  • A. B. Yelakov
  • D. A. Kashirin
  • V. V. Svotina
  • O. O. Spivak
  • M. V. Cherkasova
Article
  • 5 Downloads

Abstract

At present, the requirements for the lifetime of electric propulsion thrusters of spacecraft are growing. The article is devoted to the selection of material of the accelerating electrode that is the critical element of the ion thruster from the lifetime point of view. The accelerating electrode of the ion thruster is exposed to bombardment by charge-exchange ions, which cause its erosion. The rate of erosion depends on the ion-sputtering rate of the material from which the accelerating electrode is made. Graphite-based materials have the lowest ion-sputtering rate. The article considers the use of carbon–carbon composite material based on the Ipresscon® carbon frame developed by OAO Kompozit as a material for manufacturing the ion thruster accelerating electrode. The results of calculation of erosion of such material and experimental verification of its application in the construction of the ion thruster are given in the article.

Keywords

electric propulsion thruster ion thruster ion-extraction system accelerating electrode erosion carbon-carbon composite material 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. D. Grishin, L. V. Leskov, and N. P. Kozlov, Electric Rocket Thrusters (Mashinostroenie, Moscow, 1975) [in Russian].Google Scholar
  2. 2.
    A. S. Koroteev, A. S. Lovtsov, V. A. Muravlev, M. Y. Selivanov, and A. A. Shagayda, “Development of ion thruster IT-500,” Eur. Phys. J. D 71, 120 (2017). doi 10.1140/epjd/e2017-70644-6CrossRefGoogle Scholar
  3. 3.
    H. J. Leiter, R. Killinger, H. Bassner, J. Miller, R. Kulies, and T. Fröhlich, “Evaluation of the performance of the advanced 200 mN radio frequency ion thruster RIT_XT,” in Proc. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhib., Indianapolis, IN, July 7–10, 2002 (Am. Inst. Aeronaut. Astronaut., Reston, VA, 2002), paper id. AIAA-2002-3836.Google Scholar
  4. 4.
  5. 5.
    D. M. Goebel and I. Katz, Fundamentals of Electric Propulsion: Ion and Hall Thrusters (Wiley, Hoboken, NJ, 2008), in Ser.: JPL Space Science and Technology Series.CrossRefGoogle Scholar
  6. 6.
    H. W. Loeb, D. Feili, G. A. Popov, V. A. Obukhov, V. V. Balashov, A. I. Mogulkin, V. M. Murashko, A. N. Nesterenko, and S. Khartov, “Design of highpower high-specific impulse RF-ion thruster,” in Proc. 32nd Int. Electric Propulsion Conf., Wiesbaden, Germany, Sept. 11–15, 2011, paper id. IEPC-2011-290.Google Scholar
  7. 7.
    V. K. Abgaryan, H. V. Loeb, V. A. Obukhov, and I. I. Shkarban, “High-frequency ion sources of inert and chemically active gases,” J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 6, 693–698 (2012).CrossRefGoogle Scholar
  8. 8.
    H. V. Loeb, G. A. Popov, V. A. Obukhov, D. Feili, Sh. Kollingvud, and A. I. Mogulkin, “Large radio-frequency ion thrusters,” Tr. Mosk. Aviats. Inst., No. 60 (2012). https://doi.org/trudymai.ru/published.php?ID=35371.Google Scholar
  9. 9.
    A. Bogatyi, R. Akhmetzhanov, N. Antropov, S. Khartov, V. Kozhevnikov, A. Plokhikh, G. Popov, and R. Grishin, “Development of low-power radio-frequency ion thruster at the Moscow Aviation Institute,” in Proc. Electric Propulsion — New Challenges: 5th Russian-German Conf. on Electric Propulsion and Their Application, Dresden, Germany, Sept. 7–12, 2014 (Dresden, 2014).Google Scholar
  10. 10.
    N. N. Antropov, R. V. Akhmetzhanov, A. V. Bogatyi, G. A. Dyakonov, G. A. Popov, A. I. Belogurov, P. A. Dronov, and A. V. Ivanov, “Low-power radio-frequency ion thruster,” Joint Conf. of 30 ISTS, 34 IEPC, 6 NSAT, Kobe-Hyogo, Japan, July 4–10, 2015, paper id. IEPC-2015-322/ISTS-2015-b-322.Google Scholar
  11. 11.
    R. V. Akhmetzhanov, A. V. Bogatyi, P. A. Dronov, G. A. D’yakonov, and A. V. Ivanov, “Low-power radio-frequency ion thruster,” Vestn. Sib. Gos. Aerokosm. Univ. im. Akad. M. F. Reshetneva 16, 378–385 (2015).Google Scholar
  12. 12.
    J. Li, J. Qiu, Y. Chu, T. Zhang, W. Meng, Y. Jia, and X. Liu, “Ion thruster grid lifetime assessment based on its structural failure,” Int. J. Mech., Aerosp., Ind., Mechatronic Manuf. Eng. 9, 1978–1981 (2015).Google Scholar
  13. 13.
    E. A. Antipov, V. V. Balashov, A. V. Veber, R. Yu. Kuftyrev, A. I. Mogulkin, V. V. Nigmatzyanov, A. I. Pankov, G. A. Popov, S. A. Sitnikov, and S. A. Khartov, “The way to choose structure materials for high frequency ion thrusters,” Tr. Mosk. Aviats. Inst., No. 65 (2013). https://doi.org/trudymai.ru/published.php?ID=35964/.Google Scholar
  14. 14.
    V. K. Abgaryan, R. V. Akhmetzhanov, Kh. V. Leb, V. A. Obukhov, and M. V. Cherkasova, “Simulation of erosion of the accelerating electrode of the ion-optical system of an ion engine,” in Ion-Surface Interactions (Proc. XXI Int. Conf., Yaroslavl, Russia, Aug. 22–26, 2013) (Yaroslavl, 2013), pp. 95–98.Google Scholar
  15. 15.
    E. A. Bogachev, A.B Elakov, A. P. Beloglazov, Yu. A. Denisov, and A. N. Timofeev, “The method of manufacturing a porous framework basis of a composite material,” RF Patent No. 2620810, Byull. Izobret. No. 16 (2017).Google Scholar
  16. 16.
    H. W. Loeb and K.-H. Schartner, Status Report of the Giessen University and TransMit, (Nordwijk, 2008).Google Scholar
  17. 17.
    V. A. Obukhov and V. E. Sosnovskii, “Calculation of the transition layer in the emission port of a gas-discharge ion source,” in Proc. 5th All-Union Conf. on Plasma Thrusters and Ion Injectors, Moscow, Oct. 19–22, 1982 (Nauka, Moscow, 1982), pp. 105–106.Google Scholar
  18. 18.
    V. K. Abgaryan, R. V. Akhmetzhanov, H. W. Loeb, V. A. Obukhov, and M. V. Cherkasova, “Numerical simulation of a high-perveance ion-extraction system with a plasma emitter,” J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 7, 1092–1099 (2013).CrossRefGoogle Scholar
  19. 19.
    P. Siegmund, “Sputtering by ion bombardment theoretical concepts,” in Sputtering by Particle Bombardment, Vol. 1: Physical Sputtering of Single-Element Solids (Springer-Verlag, Berlin, 1981; Mir, Moscow, 1984).Google Scholar
  20. 20.
    V. S. Avilkina, N. N. Andrianova, A. M. Borisov, Yu. S. Virgiliev, E. S. Mashkova, and V. I. Shulga, “Study of the physical sputtering of a carbon-ceramic composite by ion bombardment,” J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6, 212–216 (2012).CrossRefGoogle Scholar
  21. 21.
    A. A. Shagaida, “Simulation of charged particle flows in ion-optical systems of ion thrusters (IOS-3D),” Certificate of Registration of Computer Program No. 2014612703 of April 21, 2014, Published April 20, 2014.Google Scholar
  22. 22.
    V. G. Grigor’yan, Booster Systems of Electrostatic Aircraft Thrusters. Study Aid (Mosk. Aviats. Inst., Moscow, 1984) [in Russian].Google Scholar
  23. 23.
    H. W. Loeb, “Principle of radio-frequency ion thrusters RIT,” RIT-22 Demonstrator Test of Astrium ST at University of Giessen, September 6–11, 2010.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • R. V. Akhmetzhanov
    • 1
    Email author
  • V. V. Balashov
    • 1
  • Ye. A. Bogachev
    • 2
  • A. B. Yelakov
    • 2
  • D. A. Kashirin
    • 2
  • V. V. Svotina
    • 1
  • O. O. Spivak
    • 3
  • M. V. Cherkasova
    • 1
  1. 1.Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute (RIAME MAI)MoscowRussia
  2. 2.OAO KompozitKorolyov, Moscow oblastRussia
  3. 3.AO Konstruktorskoe Buro KhimavtomatikiVoronezhRussia

Personalised recommendations