Advertisement

Theoretical Foundations of Chemical Engineering

, Volume 53, Issue 5, pp 709–718 | Cite as

Intelligent Logical Information Algorithm for Choosing Energy- and Resource-Efficient Chemical Technologies

  • B. B. Bogomolov
  • V. S. Boldyrev
  • A. M. Zubarev
  • V. P. Meshalkin
  • V. V. Men’shikovEmail author
Article
  • 1 Downloads

Abstract

A logical information algorithm has been proposed for choosing energy- and resource-efficient chemical technologies using the logical information modeling of business processes and intelligent models of knowledge representation for decision-making. Based on the structured analysis and design technique and intelligent models for representing knowledge about chemical technologies in the form of frames, a procedure has been proposed for constructing the logical information model of a business process for choosing an efficient technological solution. A logical information model for business processes and an algorithm for choosing an energy- and resource-efficient technology for processing associated petroleum gas have been developed.

Keywords:

algorithm business processes life cycle logical information modeling standard operating procedures process engineering solutions frames chemical process systems chemical processes chemical technology 

Notes

REFERENCES

  1. 1.
    Bogomolov, B.B., Bykov, E.D., Men’shikov, V.V., and Zubarev, A.M., Organizational and technological modeling of chemical process systems, Theor. Found. Chem. Eng., 2017, vol. 51, no. 2, pp. 238–246.  https://doi.org/10.1134/S0040579517010043 CrossRefGoogle Scholar
  2. 2.
    Bogomolov, B.B., Men’shikov, V.V., Bogoslovskii, K.G., Bykov, E.D., and Shumova, V.S., Managing the design and operation of paint lines using business modeling, in Sbornik nauchnykh trudov “Tekhnologiya lakokrasochnykh pokrytii”. Nauchno-proizvodstvennoe ob"edinenie “Lakokraspokrytie” (The Technology of Paint and Varnish Coatings: A Collection of Scientific Works, Transactions of the Lakokraspokrytie Research and Production Association), Moscow: Peint-Media, 2012, p. 40.Google Scholar
  3. 3.
    Repin, V.V. and Eliferov, V.G., Protsessnyi podkhod k upravleniyu. Modelirovanie biznes-protsessov (The Process Approach to Management: Business Process Modeling), Moscow: Standarty i Kachestvo, 2009, 7th ed.Google Scholar
  4. 4.
    Bogomolov, B.B., Men’shikov, V.V., Bykov, E.D., and Bogoslovskii, K.G., Modeling of chemical process systems using the organizational and technological models of business processes, in Sbornik nauchnykh trudov “Tekhnologiya lakokrasochnykh pokrytii”. Nauchno-proizvodstvennoe ob"edinenie “Lakokraspokrytie” (The Technology of Paint and Varnish Coatings: A Collection of Scientific Works, Transactions of the Lakokraspokrytie Research and Production Association), Moscow: Peint-Media, 2013, p. 4.Google Scholar
  5. 5.
    Fuchino, T., Shimada, Y., Kitajima, T., Takeda, K., and Miyazawa, M., Framework to manage engineering technology for plant maintenance, J. Chem. Eng. Jpn., 2015, vol. 48, no. 8, p. 662.CrossRefGoogle Scholar
  6. 6.
    Kafarov, V.V. and Meshalkin, V.P., Analiz i sintez khimiko-tekhnologicheskikh sistem (Analysis and Synthesis of Chemical Process Systems), Moscow: Khimiya, 1991.Google Scholar
  7. 7.
    Urbanovich, O. and Bogomolov, B.B., A business process for selecting a technology for the processing of associated petroleum gas, in Logistika i ekonomika resursoenergosberezheniya v promyshlennosti (MNPK “LEREP-8-2014"). Sbornik nauchnykh trudov po materialam VIII Mezhdunarodnoi nauchno-prakticheskoi konferentsii LEREP-8-2014 (Logistics and Economy of Resource and Energy Saving in Industry (IRPC "LERESI-8-2014"): A Collection of Scientific Works Based on Papers Presented at the VIII International Research and Practice Conference LERESI-8-2014), Moscow: Ross. Khim.-Tekhnol. Univ. im. D.I. Mendeleeva, 2014, p. 91.Google Scholar
  8. 8.
    Maladzhanova, N.A. and Bogomolov, B.B., Development of an expert system for choosing a technology for the processing of waste products from a chemical process system, Usp. Khim. Khim. Tekhnol., 2013, vol. 27, no. 9, p. 84.Google Scholar
  9. 9.
    Meshalkin, V.P., Katerishchuk, M.Yu., and Vasilenko, E.A., A procedure for organizing the integrated assessment of the efficiency of business process reengineering at an industrial enterprise, Izv. Vyssh. Uchebn. Zaved., Ekon., Finans. Upr. Proizvod., 2014, no. 2, p. 87.Google Scholar
  10. 10.
    Bogomolov, B.B. and Meshalkin, V.P., Principles of the development of expert systems for the optimal arrangement of chemical plant equipment, Teor. Osn. Khim. Tekhnol., 1994, vol. 28, no. 6, p. 638.Google Scholar
  11. 11.
    Dvoretsky, D.S. and Dvoretsky, S.I., Integrated design of flexible chemical processes, devices, and control systems, Theor. Found. Chem. Eng., 2014, vol. 48, no. 5, pp. 614–621.  https://doi.org/10.1134/S0040579514050169 CrossRefGoogle Scholar
  12. 12.
    Bogomolov, B.B., Meshalkin, V.P., and Sel’skii, B.E., A calculation-logical algorithm for predicting failures in working vacuum filters of a mineral oil deparaffination setup, Theor. Found. Chem. Eng., 1998, vol. 32, no. 6, p. 582.Google Scholar
  13. 13.
    Meshalkin, V.P., Ekspertnye sistemy v khimicheskoi tekhnologii. Osnovy teorii, opyt razrabotki i primeneniya (Expert Systems in Chemical Engineering: Theoretical Fundamentals and Experience in Development and Applications), Moscow: Khimiya, 1995.Google Scholar
  14. 14.
    Meshalkin, V.P., Tyukaev, D.A., and Shumaev, V.A., Economic and mathematical models of controlling the consumption of materials and the quality of designed equipment, Integral, 2011, no. 2, p. 90.Google Scholar
  15. 15.
    Sarkisov, P.D., Stoyanova, O.V., and Dli, M.I., Principles of project management in the field of nanoindustry, Theor. Found. Chem. Eng., 2013, vol. 47, no. 1, p. 31.CrossRefGoogle Scholar
  16. 16.
    Date, C.J., An Introduction to Database Systems, Reading, Mass.: Addison-Wesley, 1999, 7th ed.Google Scholar
  17. 17.
    Ziyatdinov, N.N., Modeling and optimization of chemical engineering processes and systems, Theor. Found. Chem. Eng., 2017, vol. 51, no. 6, pp. 889–892.  https://doi.org/10.1134/S0040579517060197 CrossRefGoogle Scholar
  18. 18.
    Orazbayev, B.B., Orazbayeva, K.N., and Utenova, B.E., Development of mathematical models and modeling of chemical engineering systems under uncertainty, Theor. Found. Chem. Eng., 2014, vol. 48, no. 2, pp. 138–147.  https://doi.org/10.1134/S0040579514020092 CrossRefGoogle Scholar
  19. 19.
    Ostrovsky, G.M., Lapteva, T.V., and Ziyatdinov, N.N., Optimal design of chemical processes under uncertainty, Theor. Found. Chem. Eng., 2014, vol. 48, no. 5, pp. 583–593.  https://doi.org/10.1134/S0040579514050212 CrossRefGoogle Scholar
  20. 20.
    Palyukh, B.V., Vinogradov, G.P., and Egereva, I.A., Managing the evolution of a chemical engineering system, Theor. Found. Chem. Eng., 2014, vol. 48, no. 3, pp. 325–331.  https://doi.org/10.1134/S0040579514030154 CrossRefGoogle Scholar
  21. 21.
    Pavlov, S.Yu., Kulov, N.N., and Kerimov, R.M., Improvement of chemical engineering processes using systems analysis, Theor. Found. Chem. Eng., 2014, vol. 48, no. 2, pp. 117–126.  https://doi.org/10.1134/S0040579514020109 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • B. B. Bogomolov
    • 1
  • V. S. Boldyrev
    • 2
  • A. M. Zubarev
    • 1
  • V. P. Meshalkin
    • 1
  • V. V. Men’shikov
    • 1
    Email author
  1. 1.Mendeleev University of Chemical Technology of RussiaMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations