Advertisement

Theoretical Foundations of Chemical Engineering

, Volume 53, Issue 5, pp 837–840 | Cite as

Comparative Characteristics of the Li–Fe–O and Li–Fe–Р–O Powders Obtained by Pyrolytic Extraction

  • T. N. PatrushevaEmail author
  • S. D. Kirik
  • A. Ya. Korets
  • A. I. Khol’kin
TECHNOLOGY OF INORGANIC COMPOUNDS AND MATERIALS
  • 1 Downloads

Abstract

The structural and optical properties of lithium–iron oxide and lithium–iron–phosphorus oxide obtained by pyrolytic extraction are compared using X-ray diffraction, vibrational spectroscopy, and Raman spectroscopy. The conditions for the formation of crystalline phases of these disperse materials are established. Using methods of spectroscopy, the material is demonstrated to contain carbon, improving the mobility of electrons.

Keywords:

pyrolytic extraction Li–Fe–O and Li–Fe–Р–O powders physicochemical properties 

Notes

REFERENCES

  1. 1.
    Bezuglov, D.A., Sinyavskii, G.P., Cherkesova, L.V., and Shalamov, G.N., Trends in the development of ferromagnetic materials with the specified properties at the nanolevel, Fiz. Osn. Priborostr., 2016, vol. 5, no. 4 (21), pp. 3–22.Google Scholar
  2. 2.
    Sakurai, Y., Arai, H., and Yamaki, J.I., Preparation of electrochemically active α-LiFeO2 at low temperature, Solid State Ionics, 1998, vols. 113–115, pp. 29–34.  https://doi.org/10.1016/S0167-2738(98)00363-4 CrossRefGoogle Scholar
  3. 3.
    Selyutin, A.A., Bobrysheva, N.P., and Kozhina, I.I., Magnetic dilution of complex oxides LiMnO2 and LiFeO2, Vestn. S.-Peterb. Univ., Ser. 4: Fiz., Khim., 2004, no. 4, pp. 117–119.Google Scholar
  4. 4.
    Uzunova, S., Uzunov, I., Kovacheva, D., Momchilov, A., and Puresheva, B., A low external temperature method for synthesis of active electrode materials for Li batteries – Part B: Synthesis of lithium iron oxides LixFeyOz , J. Appl. Electrochem., 2006, vol. 36, pp. 1333–1339.  https://doi.org/10.1007/s10800-006-9167-2 CrossRefGoogle Scholar
  5. 5.
    Uebou, Y., Okada, S., Egashira, M., and Yamaki, J.I., Cathode properties of pyrophosphates for rechargeable lithium batteries, Solid State Ionics, 2002, vol. 148, nos. 3–4, pp. 323–328.  https://doi.org/10.1016/S0167-2738(02)00069-3 CrossRefGoogle Scholar
  6. 6.
    Qiao, Y., Guo, H., Liu, G., and Gao, J., Optimization of hydrothermally synthesized LiFePO4 nanoscaled particles for lithium-ion batteries, Russ. J. Electrochem., 2013, vol. 49, no. 5, pp. 466–469.  https://doi.org/10.1134/S1023193513050091 CrossRefGoogle Scholar
  7. 7.
    Smirnov, S.E., Egorov, A.M., Smirnov, K.S., and Fateev, S.A., Lithium batteries based on nanomaterials, Nauchn. Al’m., 2017, vol. 28, pp. 2–3.Google Scholar
  8. 8.
    Okada, S., Sawa, S., Egashira, M., Yamaki, J.I., Tabuchi, M., Kageyama, H., Konishi, T., and Yoshino, A., Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries, J. Power Sources, 2001, vols. 97–98, pp. 430–432.  https://doi.org/10.1016/S0378-7753(01)00631-0 CrossRefGoogle Scholar
  9. 9.
    Hizhnyi, Yu.A., Oliynyk, A., Gomenyuk, O., Nedilko, S.G., Nagornyi, P., Bojko, R., and Bojko, V., The electronic structure and optical properties of ABP2O7 (A = Na, Li) double phosphates, Opt. Mater. (Amsterdam, Neth.), 2008, vol. 30, no. 5, pp. 687–689.  https://doi.org/10.1016/j.optmat.2007.02.009
  10. 10.
    Tabuchi, M., Ado, K., and Kobayashi, H., Matsubara, I., et al., Magnetic properties of metastable lithium iron oxides obtained by solvothermal/hydrothermal reaction, J. Solid State Chem., 1998, vol. 141, no. 2, pp. 554–561.  https://doi.org/10.1006/jssc.1998.8018 CrossRefGoogle Scholar
  11. 11.
    Vucinic-Vasic, M., Antic, B., Blanusa, J., Rakic, S., Kremenović, A., Nikolic, A.S., and Kapor, A., Formation of nanosize Li-ferrites from acetylacetonato complexes and their crystal structure, microstructure and order–disorder phase transition, Appl. Phys. A: Mater. Sci. Process., 2006, vol. 82, no. 1, pp. 49–54.  https://doi.org/10.1007/s00339-005-3378-y CrossRefGoogle Scholar
  12. 12.
    Jović, N.G., Masadeh, A.S., Kremenović, A.S., Antić, B.V., Blanuša, J.L., Cvjetičanin, N.D., Goya, G.F., Antisari, M.V., and Božin, E.S., Effects of thermal annealing on structural and magnetic properties of lithium ferrite nanoparticles, J. Phys. Chem. C, 2009, vol. 113, pp. 20559–20567.  https://doi.org/10.1021/jp907559y CrossRefGoogle Scholar
  13. 13.
    Smolentsev, A.I., Meshalkin, A.B., Podberezskaya, N.V., and Kaplun, A.B., Refinement of LiFe5O8 crystal structure, J. Struct. Chem., 2008, vol. 49, no. 5, pp. 953–956.  https://doi.org/10.1007/s10947-008-0163-8 CrossRefGoogle Scholar
  14. 14.
    Doeff, M.M., Hu, Y., McLarnon, F., and Kostecki, R., Effect of surface carbon structure on the electrochemical performance of LiFePO4, Electrochem. Solid-State Lett., 2003, vol. 6, no. 10, pp. A207–A209.  https://doi.org/10.1149/1.1601372 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • T. N. Patrusheva
    • 1
    • 2
    Email author
  • S. D. Kirik
    • 2
  • A. Ya. Korets
    • 2
  • A. I. Khol’kin
    • 3
  1. 1.Ustinov Baltic State Technical University (VOENMEKh)St. PetersburgRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia
  3. 3.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations