Theoretical Foundations of Chemical Engineering

, Volume 53, Issue 5, pp 855–859 | Cite as

Preparation of Nanosized Powder Aluminum, Magnesium, and Zinc Oxides

  • G. P. PanasyukEmail author
  • E. A. Semenov
  • I. V. Kozerozhets
  • L. A. Azarova
  • V. N. Belan
  • M. N. Danchevskaya


A method for the preparation of nanosized powder metal oxides (Al2O3, MgO, and ZnO) has been developed by the sequential heat treatment of saturated solutions of salts of these metals and sucrose at a temperature of 350°C and then 800°C. The application fields and physicochemical and technological properties of the materials synthesized are determined.


nanosized powder aluminum oxide nanosized powder magnesium oxide nanosized powder zinc oxide 



This work was performed in the framework of the State Assignment to the Kurnakov Institute, no. 0088-2014-0003.


  1. 1.
    Zamani, F. and Taghvaei, A.H., Synthesis of nanocrystalline Mg0.6Cd0.4Fe2O4 ferrite by glycine-nitrate auto-combustion method and investigation of its microstructure and magnetic properties, Ceram. Int., 2017, vol. 43, no. 18, pp. 16693–16702. CrossRefGoogle Scholar
  2. 2.
    Choi, J., Yoo, K.S., Kim, S.D., Park, H.K., Nam, C.W., and Kim, J., Synthesis of mesoporous spherical γ‑Al2O3 particles with varying porosity by spray pyrolysis of commercial boehmite, J. Ind. Eng. Chem. (Amsterdam, Neth.), 2017, vol. 56, pp. 151–156.
  3. 3.
    El-Amir, A.A.M., Ewais, E.M.M., Abdel-Aziem, A.R., Ahmed, A., and El-Anadouli, B.E.H., Nano-alumina powders/ceramics derived from aluminum foil waste at low temperature for various industrial applications, J. Environ. Manage., 2016, vol. 183, pp. 121–125. CrossRefPubMedGoogle Scholar
  4. 4.
    Panasyuk, G.P., Kozerozhets, I.V., Voroshilov, I.L., Belan, V.N., Semenov, E.A., and Luchkov, I.V., The thermodynamic properties and role of water contained in dispersed oxides in precursor-boehmite conversion, based on the example of aluminum hydroxide and oxide under hydrothermal conditions in different environments, Russ. J. Phys. Chem. A, 2015, vol. 89, no. 4, pp. 592–597.CrossRefGoogle Scholar
  5. 5.
    Panasyuk, G.P., Belan, V.N., Voroshilov, I.L., and Kozerozhets, I.V., Hydrargillite → boehmite transformation, Inorg. Mater., 2010, vol. 46, no. 7, pp. 747–753. CrossRefGoogle Scholar
  6. 6.
    Sergeev, G.B., Nanokhimiya (Nanochemistry), Moscow: Mosk. Gos. Univ., 2003.Google Scholar
  7. 7.
    Varadharajan, R. and Baskaran, D., Diverse nano dimension of SDS, PEG and CTAB roofed MgO nano powder synthesized by co-precipitation method, J. Nanostruct., 2017, vol. 7, no. 3, pp. 189–193. CrossRefGoogle Scholar
  8. 8.
    Yoo, D.J., Lim, D.H., Kang, Y., Lee, C.G., and Kang, G.M., Optical properties of nano-structured ZnO: Sn powders prepared in a micro drop fluidized reactor, J. Chem. Eng. Jpn., 2017, vol. 50, no. 1, pp. 21–25. CrossRefGoogle Scholar
  9. 9.
    Hadis, M., Zinc Oxide: Fundamentals, Materials and Device Technology, Weinheim: Wiley-VCH, 2009.Google Scholar
  10. 10.
    Kalashnikov, S.V., Particle size differentiation of nanostructured objects by an acoustic method and in a centrifugal force field, Cand. Sci. (Eng.) Dissertation, Ulan-Ude, 2016.Google Scholar
  11. 11.
    Braunovich, M., Konchits, V., and Myshkin, N., Electrical Contacts: Fundamentals, Applications and Technology, London: CRC, 2006.CrossRefGoogle Scholar
  12. 12.
    Zemtsova, E.G., Monin, A.V., Smirnov, V.M., Semenov, B.N., and Morozov, N.F., Preparation and mechanical properties of alumina ceramics based on aluminum oxide micro- and nanoparticles, Fiz. Mezomekh., 2014, vol. 17, no. 6, pp. 53–58.Google Scholar
  13. 13.
    Kalashnikov, S.V., Romanov, N.A., Nomoev, A.V., and Dzidziguri, E.L., Particle size differentiation in centrifugal force field, Nanotechnol. Russ., 2014, vol. 9, nos. 9–10, pp. 549–554. CrossRefGoogle Scholar
  14. 14.
    Khiterkheeva, N.S., Nomoev, A.V., Bardakhanov, S.P., and Uladaeva, S.S., RF Patent 250896, 2014.Google Scholar
  15. 15.
    Borisov, Yu.V., Zubkov, V.D., Shutov, V.A., and Yusupov, V.F., RF Patent 2411083, 2011.Google Scholar
  16. 16.
    Tsao, T.M., Wang, M.K., and Huang, P.M., Automated ultrafiltration device for efficient collection of environmental nanoparticles from aqueous suspensions, Soil Sci. Soc. Am. J., 2009, vol. 73, pp. 1808–1816.CrossRefGoogle Scholar
  17. 17.
    Galyshev, S.N., Bazhin, P.M., Stolin, A.M., Musin, F.F., Solov’ev, P.V., and Astanin, V.V., High-temperature firing of composite based on the MAX-phase of the Ti–Al–C system, Refract. Ind. Ceram., 2018, vol. 58, no. 5, pp. 557–561.CrossRefGoogle Scholar
  18. 18.
    Bersh, A.V., Belyakov, A.V., Mazalov, D.Yu., Solov’ev, S.A., Sudnik, L.V., and Fedotov, A.V., Formation and sintering of boehmite and aluminum oxide nanopowders, Refract. Ind. Ceram., 2017, vol. 57, no. 6, pp. 655–660.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. P. Panasyuk
    • 1
    Email author
  • E. A. Semenov
    • 1
  • I. V. Kozerozhets
    • 1
  • L. A. Azarova
    • 1
  • V. N. Belan
    • 1
  • M. N. Danchevskaya
    • 2
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations