Advertisement

Theoretical Foundations of Chemical Engineering

, Volume 53, Issue 5, pp 848–854 | Cite as

Production of Chemically Pure Zirconia-Based Nanoceramics in the ZrO2(Y2O3)–Al2O3 System for Restorative Dentistry

  • L. V. MorozovaEmail author
  • N. Yu. Kovalko
  • M.V. Kalinina
  • O. A. Shilova
NANOMATERIALS AND NANOTECHNOLOGIES
  • 1 Downloads

Abstract

The synthesis technology of a chemically pure nanodisperse precursor powder (10–12 nm) based on a tetragonal solid zirconia (t-ZrO2) solution in the ZrO2 system (Y2O3)–Al2O3 for restorative dentistry is developed. A ceramic material with a crystallite size of 60–65 nm is obtained; its phase composition, dispersion, microstructure, and physical and mechanical properties are investigated; and its low-temperature moisture aging structural stability is established.

Keywords:

zirconia chemical precipitation nanocrystalline powders nanoceramics restorative dentistry 

Notes

REFERENCES

  1. 1.
    Sevast’yanov, V.I. and Kirpichnikov, M.P., Biosovmestimye materialy (Biocompatible Materials), Moscow: MIA, 2011.Google Scholar
  2. 2.
    Hench, L.L., An Introduction to Bioceramics, London: Imperial College Press, 2013.CrossRefGoogle Scholar
  3. 3.
    Grigor’ev, M.V. and Kul’kov, S.N., Synthesis of ceramic materials with the specified structure and properties for biomedical applications, Sbornik materialov III Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Novye tekhnologii sozdaniya i primeneniya biokeramiki v vosstanovitel’noi meditsine” (Proc. III International Research and Practice Conference “New Technologies for Production and Application of Bioceramics in Regenerative Medicine”) (Tomsk, 2013), Tomsk: VTSNT, 2013, pp. 47–52.Google Scholar
  4. 4.
    Podzorova, L.I., Il’icheva, A.A., Anisimova, S.V., et al., Yb–TZP ceramics for orthopedic stomatology, Nanotekhnol. Okhr. Zdorov’ya, 2013, vol. 5, no. 4 (17), pp. 10–14.Google Scholar
  5. 5.
    Proskudin, D.V. and Starosvetskii, S.I., Ceramics in present-day orthopedic stomatology, Sbornik materialov III Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Novye tekhnologii sozdaniya i primeneniya biokeramiki v vosstanovitel’noi meditsine” (Proc. III International Research and Practice Conference “New Technologies for Production and Application of Bioceramics in Regenerative Medicine”) (Tomsk, 2013), Tomsk: VTSNT, 2013, pp. 136–139.Google Scholar
  6. 6.
    Porozova, S.E. and Kulmetyeva, V.B., Influence of matrix replacement on consolidation processes of composite ceramic materials of ZrO2-Al2O3 system, Inorg. Mater.: Appl. Res., 2014, vol. 5, no. 4, pp. 420–426.  https://doi.org/10.1134/S2075113314040406 CrossRefGoogle Scholar
  7. 7.
    Trusova, E.A., Vokhmintsev, K.V., Khrushcheva, A.A., and Pisarev, S.A., Technology of ultradispersed products for fine-grained ceramics, Khim. Tekhnol., 2013, vol. 14, no. 5, pp. 269–279.Google Scholar
  8. 8.
    Konakov, V.G., Borisova, N.V., Golubev, S.N., et al., The prehistory of the production of nanosized precursors based on the solid solutions of zirconium dioxide and their thermal evolution, Vestn. S.-Peterb. Univ., Ser. 4: Fiz., Khim., 2012, no. 2, pp. 65–75.Google Scholar
  9. 9.
    Generalov, M.B., Osnovnye protsessy kriokhimicheskoi nanotekhnologii (Basic Processes in Cryochemical Nanotechnology), Moscow: Professiya, 2010.Google Scholar
  10. 10.
    Danilenko, I., Konstantinova, T., Volkova, G., Burkhovetski, V., and Glazunova, V., The role of powder preparation method in enhancing fracture toughness of zirconia ceramics with low alumina amount, J. Ceram. Sci. Technol., 2015, vol. 6, no. 3, pp. 191–200.Google Scholar
  11. 11.
    Morozova, L.V., Kalinina, M.V., Arsent’ev, M.Yu., and Shilova, O.A., Influence of cryochemical and ultrasonic processing on the texture and thermal decomposition of xerogels and properties of nanoceramics in the ZrO2(Y2O3) – Al2O3 system, Inorg. Mater., 2017, vol. 53, no. 6, pp. 640–647.  https://doi.org/10.1134/S0020168517060115 CrossRefGoogle Scholar
  12. 12.
    Morozova, L.V., Kalinina, M.V., Koval’ko, N.Yu., and Shilova, O.A., RF Patent 2536593, Izobret., Polezn. Modeli, 2014, no. 36.Google Scholar
  13. 13.
    Morozova, L.V., Kalinina, M.V., Panova, T.I., Popov, V.P., Drozdova, I.A., and Shilova, O.A., Synthesis of the study of solid solutions based on the ZrO2–HfO2–Y2O3(CeO2) system, Glass Phys. Chem., 2017, vol. 43, no. 5, pp. 464–470.  https://doi.org/10.1134/S1087659617050133 CrossRefGoogle Scholar
  14. 14.
    Zavodinsky, V.G. and Chibisov, A.N., Stability of cubic zirconia and of stoichiometric zirconia nanoparticles, Phys. Solid State, 2006, vol. 48, no. 2, pp. 363–368.  https://doi.org/10.1134/S1063783406020296 CrossRefGoogle Scholar
  15. 15.
    Morozova, L.V., Kalinina, M.V., Koval’ko, N.Yu., Arsent’ev, M.Yu., and Shilova, O.A., Preparation of zirconia-based nanoceramics with a high degree of tetragonality, Glass Phys. Chem., 2014, vol. 40, no. 3, pp. 352–355.  https://doi.org/10.1134/S1087659614030158 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • L. V. Morozova
    • 1
    Email author
  • N. Yu. Kovalko
    • 1
  • M.V. Kalinina
    • 1
  • O. A. Shilova
    • 1
  1. 1.Institute of Silicate Chemistry, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations