Advertisement

Interphase Distribution of Thiophene, Toluene, and o-Xylene in the Hexane–Polymer–Water Extraction System

  • Yu. A. ZakhodyaevaEmail author
  • V. O. Solov’ev
  • I. V. Zinov’eva
  • D. G. Rudakov
  • A. V. Timoshenko
  • A. A. Voshkin
Article
  • 7 Downloads

Abstract

The extraction of sulfur-containing and aromatic compounds from light hydrocarbons using water-soluble polymers has been studied experimentally and theoretically. During experimental studies, the extraction of thiophene, toluene, and o-xylene from n-hexane using extraction systems based on polyethylene glycols with different molecular weights, polypropylene glycol 425, and polyvinylpyrrolidone 3500 has been investigated. Based on mathematical modeling, the dependences of distribution coefficients for toluene and o-xylene on the concentration of the polymer using an extraction system based on polyethylene glycol 400 have been derived. The results of this study can be used in the development of new extraction processes for purifying light hydrocarbon fractions from sulfur-containing and aromatic compounds.

Keywords:

water-soluble polymers light hydrocarbon fractions extraction interphase distribution thiophene toluene o-xylene hexane mathematical modeling 

Notes

REFERENCES

  1. 1.
    Królikowski, M. and Lipińska, A., Separation of thiophene, or benzothiophene from model fuel using glycols. Liquid–liquid phase equilibria and oxidative desulfurization study, Fluid Phase Equilib., 2019, vol. 482, pp. 11–23.  https://doi.org/10.1016/j.fluid.2018.10.017 CrossRefGoogle Scholar
  2. 2.
    Kianpour, E. and Azizian, S., Polyethylene glycol as a green solvent for effective extractive desulfurization of liquid fuel at ambient conditions, Fuel, 2014, vol. 137, pp. 36–40.  https://doi.org/10.1016/j.fuel.2014.07.096 CrossRefGoogle Scholar
  3. 3.
    Jaf, Z.N., Altarawneh, M., Miran, H.A., Jiang, Z.T., and Dlugogorski, B.Z., Hydrodesulfurization of thiophene over γ-Mo2N catalyst, Mol. Catal., 2018, vol. 459, pp. 21–30.  https://doi.org/10.1016/j.mcat.2018.07.008 CrossRefGoogle Scholar
  4. 4.
    Dehghan, R. and Anbia, M., Zeolites for adsorptive desulfurization from fuels: A review, Fuel Process. Technol., 2017, vol. 167, pp. 99–116.  https://doi.org/10.1016/j.fuproc.2017.06.015 CrossRefGoogle Scholar
  5. 5.
    Zhang, X.F., Wang, Z., Feng, Y., et al., Adsorptive desulfurization from the model fuels by functionalized UiO-66(Zr), Fuel, 2018, vol. 234, pp. 256–262.  https://doi.org/10.1016/j.fuel.2018.07.035 CrossRefGoogle Scholar
  6. 6.
    Ibrahim, M.H., Hayyan, M., Hashim, M.A., and Hayyan, A., The role of ionic liquids in desulfurization of fuels: A review, Renewable Sustainable Energy Rev., 2017, vol. 76, pp. 1534–1549.  https://doi.org/10.1016/j.rser.2016.11.194 CrossRefGoogle Scholar
  7. 7.
    Zhao, K., Cheng, Y., Liu, H., et al., Extractive desulfurization of dibenzothiophene by a mixed extractant of N,N-dimethylacetamide, N,N-dimethylformamide and tetramethylene sulfone: Optimization by Box–Behnken design, RSC Adv., 2015, vol. 5, no. 81, pp. 66013–66023.  https://doi.org/10.1039/C5RA12305D CrossRefGoogle Scholar
  8. 8.
    Song, Z., Yu, D., Zeng, Q., et al., Effect of water on extractive desulfurization of fuel oils using ionic liquids: A COSMO-RS and experimental study, Chin. J. Chem. Eng., 2017, vol. 25, no. 2, pp. 159–165.  https://doi.org/10.1016/j.cjche.2016.08.029 CrossRefGoogle Scholar
  9. 9.
    Nicolae, M., Oprea, F., and Fendu, E.M., Dipropylene glycol as a solvent for the extraction of aromatic hydrocarbons. Analysis and evaluation of the solvency properties and simulation of the extraction processes, Chem. Eng. Res. Des., 2015, vol. 104, pp. 287–295.  https://doi.org/10.1016/j.cherd.2015.08.021 CrossRefGoogle Scholar
  10. 10.
    Gao, J., Zhu, S., Dai, Y., Xiong, C., Li, C., Yang, W., and Jiang, X., Performance and mechanism for extractive desulfurization of fuel oil using modified polyethylene glycol, Fuel, 2018, vol. 233, pp. 704–713.  https://doi.org/10.1016/j.fuel.2018.06.101 CrossRefGoogle Scholar
  11. 11.
    Bhutto, A.W., Abro, R., Gao, S., Abbas, T., Chen, X., and Yu, G., Oxidative desulfurization of fuel oils using ionic liquids: A review, J. Taiwan Inst. Chem. Eng., 2016, vol. 62, pp. 84–97.  https://doi.org/10.1016/j.jtice.2016.01.014 CrossRefGoogle Scholar
  12. 12.
    Lima, F., Gouvenaux, J., Branco, L.C., Silvestre, A.J.D., and Marrucho, I.M., Towards a sulfur clean fuel: Deep extraction of thiophene and dibenzothiophene using polyethylene glycol-based deep eutectic solvents, Fuel, 2018, vol. 234, pp. 414–421.  https://doi.org/10.1016/j.fuel.2018.07.043 CrossRefGoogle Scholar
  13. 13.
    Chen, Y., Song, H., Meng, H., Lu, Y., Li, C., Lei, Z., and Chen, B., Polyethylene glycol oligomers as green and efficient extractant for extractive catalytic oxidative desulfurization of diesel, Fuel Process. Technol., 2017, vol. 158, pp. 20–25.  https://doi.org/10.1016/j.fuproc.2016.10.019 CrossRefGoogle Scholar
  14. 14.
    Zakhodyaeva, Yu.A., Voshkin, A.A., Belova, V.V., and Khol’kin, A.I., Extraction of monocarboxylic acids with binary extracting agents based on amines and quaternary ammonium bases, Theor. Found. Chem. Eng., 2011, vol. 45, no. 5, pp. 739–743.  https://doi.org/10.1134/S0040579511050186 CrossRefGoogle Scholar
  15. 15.
    Kholkin, A.I., Belova, V.V., Zakhodyaeva, Y.A., and Voshkin, A.A., Solvent extraction of weak acids in binary extractant systems, Sep. Sci. Technol., 2013, vol. 48, no. 9, pp. 1417–1425.  https://doi.org/10.1080/01496395.2012.745000 CrossRefGoogle Scholar
  16. 16.
    Zakhodyaeva, Yu.A., Voshkin, A.A., Belova, V.V., and Khol’kin, A.I., Extraction of monocarboxylic acids by trioctylmethylammonium di(2-ethylhexyl)phosphate, Theor. Found. Chem. Eng., 2012, vol. 46, no. 4, pp. 413–418.  https://doi.org/10.1134/S0040579512040094 CrossRefGoogle Scholar
  17. 17.
    Khol'kin, A.I., Zakhodyaeva, Yu.A., Voshkin, A.A., and Belova, V.V., Interphase distribution of weak acids in systems with binary extractants, Theor. Found. Chem. Eng., 2013, vol. 47, no. 4, pp. 453–460.  https://doi.org/10.1134/S0040579513040088 CrossRefGoogle Scholar
  18. 18.
    Voshkin, A.A., Zakhodyaeva, Yu.A., Zinov’eva, I.V., and Shkinev, V.M., Interphase distribution of aromatic acids in the polyethylene glycol–sodium sulfate–water system, Theor. Found. Chem. Eng., 2018, vol. 52, no. 5, pp. 890–893.  https://doi.org/10.1134/S0040579518050287 CrossRefGoogle Scholar
  19. 19.
    Zakhodyaeva, Yu.A., Rudakov, D.G., Solov’ev, V.O., Voshkin, A.A., and Timoshenko, A.V., Liquid–liquid equilibrium of aqueous two-phase system composed of poly(ethylene oxide) 1500 and sodium nitrate, J. Chem. Eng. Data, 2019, vol. 64, no. 3, pp. 1250–1255.  https://doi.org/10.1021/acs.jced.8b01138 CrossRefGoogle Scholar
  20. 20.
    de Oliveira, W.C.M., Rodrigues, G.D., Mageste, A.B., and de Lemos, L.R., Green selective recovery of lanthanum from Ni-MH battery leachate using aqueous two-phase systems, Chem. Eng. J., 2017, vol. 322, pp. 346–352.  https://doi.org/10.1016/j.cej.2017.04.044 CrossRefGoogle Scholar
  21. 21.
    Zakhodyaeva, Yu.A., Izyumova, K.V., Solov’eva, M.S., and Voshkin, A.A., Extraction separation of the components of leach liquors of batteries, Theor. Found. Chem. Eng., 2017, vol. 51, no. 5, pp. 883–887.  https://doi.org/10.1134/S0040579517050244 CrossRefGoogle Scholar
  22. 22.
    Valadares, A., Valadares, C.F., de Lemos, L.R., Mageste, A.B., and Rodrigues, G.D., Separation of cobalt and nickel in leach solutions of spent nickel-metal hydride batteries using aqueous two-phase systems (ATPS), Hydrometallurgy, 2018, vol. 181, pp. 180–188.  https://doi.org/10.1016/j.hydromet.2018.09.006 CrossRefGoogle Scholar
  23. 23.
    da Silveira Leite, D., Carvalho, P.L.G., de Lemos, L.R., Mageste, A.B., and Rodrigues, G.D., Hydrometallurgical separation of copper and cobalt from lithium-ion batteries using aqueous two-phase systems, Hydrometallurgy, 2017, vol. 169, pp. 245–252.  https://doi.org/10.1016/j.hydromet.2017.01.002 CrossRefGoogle Scholar
  24. 24.
    Phong, W.N., Show, P.L., Chow, Y.H., and Ling, T.C., Recovery of biotechnological products using aqueous two phase systems, J. Biosci. Bioeng., 2018, vol. 126, no. 3, pp. 273–281.  https://doi.org/10.1016/j.jbiosc.2018.03.005 CrossRefGoogle Scholar
  25. 25.
    Wu, X., Li, G., Yang, H., and Zhou, H., Study on extraction and separation of butyric acid from clostridium tyrobutyricum fermentation broth in PEG/Na2SO4 aqueous two-phase system, Fluid Phase Equilib., 2015, vol. 403, pp. 36–42.  https://doi.org/10.1016/j.fluid.2015.05.047 CrossRefGoogle Scholar
  26. 26.
    de Araujo Sampaio, D., Mafra, L.I., Yamamoto, C.I., et al., Aqueous two-phase (polyethylene glycol + sodium sulfate) system for caffeine extraction: Equilibrium diagrams and partitioning study, J. Chem. Thermodyn., 2016, vol. 98, pp. 86–94.  https://doi.org/10.1016/j.jct.2016.03.004 CrossRefGoogle Scholar
  27. 27.
    Nadar, S.S., Pawar, R.G., and Rathod, V.K., Recent advances in enzyme extraction strategies: A comprehensive review, Int. J. Biol. Macromol., 2017, vol. 101, pp. 931–957.  https://doi.org/10.1016/j.ijbiomac.2017.03.055 CrossRefGoogle Scholar
  28. 28.
    Frolkova, A.V., Akishina, A.A., and Frolkova, A.K., Multicomponent systems with three-phase splitting region, Tonkie Khim. Tekhnol., 2016, vol. 11, no. 6, p. 15.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Yu. A. Zakhodyaeva
    • 1
    • 2
    Email author
  • V. O. Solov’ev
    • 2
  • I. V. Zinov’eva
    • 2
  • D. G. Rudakov
    • 1
  • A. V. Timoshenko
    • 1
  • A. A. Voshkin
    • 1
    • 2
  1. 1.MIREA – Russian Technological UniversityMoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations