Advertisement

Influence of Characteristics of Nickel Complex Compounds on the Rate of Chemical Deposition and Composition of Nickel–Phosphorus Alloy

  • E. G. VinokurovEmail author
  • G. M. Mukhametova
  • V. V. Vasil’ev
  • T. F. Burukhina
  • V. D. Skopintsev
Article
  • 5 Downloads

Abstract

The influence of characteristics of ligands and nickel complex compounds on the rate of the autocatalytic (chemical) deposition of nickel–phosphorus coating and the phosphorus content is considered. It has been established that the charge and complex of the ligand have the highest effect on the rate of process, and charge number and stability of the complex ion have the highest effect on the content of phosphorus in the coating. Mathematical models describing the relationship between the deposition rate, the composition of coatings, and the corresponding ligand parameters are obtained. Recommendations for the selection of the ligand composition of solutions for the chemical deposition of nickel–phosphorus alloy are proposed.

Keywords:

chemical nickel plating complexation Ni–P coatings nickel complexes deposition rate 

Notes

REFERENCES

  1. 1.
    Skopintsev, V.D. and Vinokurov, E.G., Teoreticheskie i prikladnye aspekty avtokataliticheskogo formirovaniya pokrytii na osnove splava nikel'–fosfor (Theoretical and Applied Aspects of the Autocatalytic Formation of Coatings Based on the Nickel–Phosphorus Alloy), Moscow: VINITI, 2018.Google Scholar
  2. 2.
    Sudagar, J., Lian, J., and Sha, W., Electroless nickel, alloy, composite and nano coatings—A critical review, J. Alloys Compd., 2013, vol. 571, no. 15, pp. 183–204.  https://doi.org/10.1016/j.jallcom.2013.03.107 CrossRefGoogle Scholar
  3. 3.
    Mallory, G.O. and Hajdu, J.B., Electroless Plating: Fundamentals and Applications, Norwich, N.Y.: American Electroplaters and Surface Finishing Society, 1996.Google Scholar
  4. 4.
    Shalkauskas, M. and Vashkyalis, A., Khimicheskaya metallizatsiya plastmass (Chemical Metallizing of Plastics), Leningrad: Khimiya, 1977, 2nd ed.Google Scholar
  5. 5.
    Gokzhaev, M.B., Morgunov, A.V., and Skopintsev, V.D., Optimizing solution composition for the chemical deposition of nickel–copper–phosphorus alloys, Inorg. Mater., 2008, vol. 44, no. 12, pp. 1319–1321.  https://doi.org/10.1134/S0020168508120108 CrossRefGoogle Scholar
  6. 6.
    Cavallotti, P.L., Magagnin, L., and Cavallotti, C., Influence of added elements on autocatalytic chemical deposition electroless Ni–P, Electrochim. Acta, 2013, vol. 114, p. 805.  https://doi.org/10.1016/j.electacta.2013.09.083 CrossRefGoogle Scholar
  7. 7.
    Salvago, G. and Cavalotti, P.L., Characteristics of the chemical reduction of nickel alloys with hypophosphite, Plating, 1972, vol. 59, no. 7, p. 665.Google Scholar
  8. 8.
    Vinokurov, E.G., Morgunov, A.V., and Skopintsev, V.D., Compositional optimization of chemical copper-doped nickel–phosphorus coatings, Inorg. Mater., 2015, vol. 51, no. 8, pp. 788–792.  https://doi.org/10.1134/S0020168515070195 CrossRefGoogle Scholar
  9. 9.
    Schlesinger, M., Electroless deposition of nickel, in Modern Electroplating, Hoboken, N.J.: Wiley, 2011, 5th ed., p. 447.Google Scholar
  10. 10.
    Fujun, L.I., Ding, L.I.U., and Tao, Y.E., Effect of complexing agent on low phosphorus electroless nickel plating, Plat. Finish., 2018, vol. 40, no. 10, p. 6.Google Scholar
  11. 11.
    Ashtiani, A.A., Faraji, S., Iranagh, S.A., et al., The study of electroless Ni-P alloys with different complexing agents on Ck45 steel substrate, Arabian J. Chem., 2017, vol. 10, suppl. 2, p. S1541.  https://doi.org/10.1016/j.arabjc.2013.05.015 CrossRefGoogle Scholar
  12. 12.
    Skopintsev, V.D., Morgunov, A.V., Vinokurov, E.G., and Nevmyatullina, Kh.A., Increasing the production rate of electroless nickel plating, Gal’vanotekh. Obrab. Poverkhn., 2016, vol. 24, no. 3, p. 26.Google Scholar
  13. 13.
    Bremner, J.G.M., Nickel plating by chemical reduction, Nature, 1948, vol. 162, p. 183.  https://doi.org/10.1038/162183b0 CrossRefGoogle Scholar
  14. 14.
    Cavallotti, P. and Salvago, G., Studies on chemical reduction of nickel and cobalt by hypophosphite. Pt. 2. Characteristics of process, Electrochem. Metall., 1968, vol. 3, no. 3, p. 239.Google Scholar
  15. 15.
    Gorbunova, K.M. and Nikiforova, A.A., Reduction of nickel by hypophosphite: The mechanism of the reaction, Zh. Fiz. Khim., 1954, vol. 28, no. 5, p. 896.Google Scholar
  16. 16.
    Vinokurov, E.G., Thermodynamic probability model of ligand selection in solutions designed for electrodeposition of alloys and multivalent metals, Prot. Met. Phys. Chem. Surf., 2010, vol. 46, no. 5, pp. 615–619.  https://doi.org/10.1134/S2070205110050205 CrossRefGoogle Scholar
  17. 17.
    Vinokurov, E.G., Demidov, A.V., and Bondar’, V.V., Physicochemical model for choosing complexes for chromium-plating solutions based on Cr(III) compounds, Russ. J. Coord. Chem., 2005, vol. 31, no. 1, pp. 14–18.  https://doi.org/10.1007/PL00022078 CrossRefGoogle Scholar
  18. 18.
    Vinokurov, E.G., Skopintsev, V.D., Nevmyatullina, Kh.A., and Morgunov, A.V., A resource-saving technology for electroless nickel plating, Khim. Prom-st. Segodnya, 2016, no. 10, p. 18.Google Scholar
  19. 19.
    Djokic, S.S. and Cavallotti, P.L., Electroless deposition: Theory and applications, Mod. Aspects Electrochem., 2010, vol. 48, p. 251.  https://doi.org/10.1007/978-1-4419-5589-0_6 Google Scholar
  20. 20.
    Vinokurov, E.G., Zhigunov, F.N., Morgunov, A.V., and Skopintsev, V.D., Effect of temperature on the kinetics of electroless nickel plating from glycinate solutions, Gal’vanotekh. Obrab. Poverkhn., 2015, vol. 23, no. 3, p. 40.Google Scholar
  21. 21.
    Akhnazarova, S.L. and Kafarov, V.V., Metody optimizatsii eksperimenta v khimicheskoi tekhnologii (Experimental Optimization Methods in Chemical Engineering), Moscow: Vysshaya Shkola, 1985.Google Scholar
  22. 22.
    Lur’e, Yu.Yu., Spravochnik po analiticheskoi khimii (Handbook of Analytical Chemistry), Moscow: Khimiya, 1971.Google Scholar
  23. 23.
    Timofeeva, E.G., Galkina, G.I., and Korochkina, E.A., Stability constants of the complexes of nickel with monoethanolamine in aqueous solutions, Tr. MKhTI im. D.I. Mendeleeva (Transactions of the Mendeleev Moscow Institute of Chemical Technology), Moscow: Mosk. Khim.-Tekhnol. Inst. im. D.I. Mendeleeva, 1969, vol. 62, p. 262.Google Scholar
  24. 24.
    Perrin, D.D., Stability Constants of Metal-Ion Complexes: Part B. Organic Ligands, Oxford: Pergamon, 1983.Google Scholar
  25. 25.
    Moelwyn-Hughes, E.A., The Chemical Statics and Kinetics of Solutions, London: Academic, 1971.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. G. Vinokurov
    • 1
    Email author
  • G. M. Mukhametova
    • 1
  • V. V. Vasil’ev
    • 1
  • T. F. Burukhina
    • 1
  • V. D. Skopintsev
    • 2
  1. 1.Mendeleev University of Chemical Technology of RussiaMoscowRussia
  2. 2.Yevdokimov Moscow State University of Medicine and DentistryMoscowRussia

Personalised recommendations