Generalized Model for Engineering and Controlling a Complex Multistage Chemical Energotechnological System for Processing Apatite-Nepheline Ore Wastes

  • V. P. Meshalkin
  • A. Yu. Puchkov
  • M. I. Dli
  • V. I. BobkovEmail author


A comprehensive formulation for the problem of engineering applied to a multistage chemical energotechnological system for the production of phosphorus from the technogenic wastes of apatite-nepheline ores is presented. The main objective of the studies performed within the procedure of engineering is to determine the phosphorus-production technology parameters decreasing energy and resource efficiency due to the optimization of energy-consumption values for all considered multistage chemical energotechnological processes instead of individual stages. A generalized model of engineering is developed for the chemical energotechnological system of phosphorus production in compliance with the IDEF0 International Standard of Function Modeling, and parameters suitable for further use in the procedure of minimizing the energy and resource efficiency of this production are concretized for multistage chemical energotechnological processes. A conceptual foundation based on the methods of automatic control theory, i.e., the state-space description of control objects, is proposed for the creation of a universal program-optimization model for a chemical energotechnological system. Some results of a simulation experiment in the Simulink environment for the modeling of dynamic systems are presented to demonstrate the applicability of the proposed approaches to the optimization of multistage chemical energotechnological processes.


chemical energotechnological system heat and mass transfer control pellets optimization energy and resource efficiency technogenic wastes functional simulation systems analysis 



This study was financially supported by the Russian Foundation for Basic Research within scientific project no. 18-29-24094 MK.


  1. 1.
    Bobkov, V.I., Fedulov, A.S., Dli, M.I., Meshalkin, V.P., and Morgunova, E.V., Scientific basis of effective energy resource use and environmentally safe processing of phosphorus-containing manufacturing waste of ore-dressing barrows and processing enterprises, Clean Technol. Environ. Policy, 2018, vol. 20, no. 10, p. 2209.CrossRefGoogle Scholar
  2. 2.
    Bobkov, V.I., Borisov, V.V., Dli, M.I., and Meshalkin, V.P., Intensive technologies for drying a lump material in a dense bed, Theor. Found. Chem. Eng., 2017, vol. 51, no. 1, pp. 70–75. CrossRefGoogle Scholar
  3. 3.
    Pavlov, S.Yu., Kulov, N.N., and Kerimov, R.M., Improvement of chemical engineering processes using systems analysis, Theor. Found. Chem. Eng., 2014, vol. 48, no. 2, pp. 117–126. CrossRefGoogle Scholar
  4. 4.
    Meshalkin, V.P., Panchenko, S.V., Dli, M.I., and Panchenko, D.S., Analysis of the thermophysical processes and operating modes of electrothermic reactor using a computer model, Theor. Found. Chem. Eng., 2018, vol. 52, no. 2, pp. 166–174. CrossRefGoogle Scholar
  5. 5.
    Bersenev, I.S., Klein, V.I., Matyukhin, V.I., and Yaroshenko, Yu.G., Decrease in the power consumption of sinter machines by the improvement of thermal schemes, Energobezop. Energosberezhenie, 2011, no. 3, p. 22.Google Scholar
  6. 6.
    Bobkov, V.I., Borisov, V.V., Dli, M.I., and Meshalkin, V.P., Multicriterial optimization of the energy efficiency of the thermal preparation of raw materials, Theor. Found. Chem. Eng., 2015, vol. 49, no. 6, pp. 842–846. CrossRefGoogle Scholar
  7. 7.
    Yin, R., Metallurgical Process Engineering, Berlin: Springer-Verlag, 2011.CrossRefGoogle Scholar
  8. 8.
    Kataev, A.A. and Melikhov, A.A., Cost management of a metallurgical enterprise, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2006, no. 5, p. 61.Google Scholar
  9. 9.
    Liu, W., Yang, J., and Xiao, B., Review on treatment and utilization of bauxite residues in China, Int. J. Miner. Process., 2009, vol. 93, p. 220.CrossRefGoogle Scholar
  10. 10.
    Petryshev, A.Yu., Bersenev, I.S., Bokovikov, B.A., and Yaroshenko, Yu.G., Formation of nitrogen oxides in the sintering of iron ore, Steel Transl., 2016, vol. 46, no. 4, pp. 241–244. CrossRefGoogle Scholar
  11. 11.
    Meshalkin, V.P., Bobkov, V.I., Dli, M.I., and Khodchenko, S.M., Computer modeling of the chemical-power engineering process of roasting of a moving multilayer mass of phosphorite pellets, Dokl. Chem., 2017, vol. 477, no. 2, pp. 282–285. CrossRefGoogle Scholar
  12. 12.
    Panchenko, S.V., Meshalkin, V.P., Dli, M.I., and Borisov, V.V., Computer-visual model of thermophysical processes in electrothermal reactor, Tsvetn. Met., 2015, no. 4, p. 55.Google Scholar
  13. 13.
    Novichikhin, A.V. and Shorokhova, A.V., Systematic processing of iron-ore waste in mining regions, Steel Transl., 2017, vol. 47, no. 7, pp. 456–462. CrossRefGoogle Scholar
  14. 14.
    Panchenko, S.V. and Shirokikh, T.V., Thermophysical processes in the burden zone of submerged arc furnaces, Theor. Found. Chem. Eng., 2014, vol. 48, no. 1, pp. 77–81. CrossRefGoogle Scholar
  15. 15.
    Elgharbi, S., Horchani-Naifer, K., and Férid, M., Investigation of the structural and mineralogical changes of Tunisian phosphorite during calcinations, J. Therm. Anal. Calorim., 2015, vol. 119, no. 1, pp. 265–271. CrossRefGoogle Scholar
  16. 16.
    Leont'ev, L.I., Physicochemical characteristics of the integrated processing of iron-bearing ores and technogenic wastes, XX Mendeleevskii s"ezd po obshchei i prikladnoi khimii. Tezisy dokladov v 5 tomakh (XX Mendeleev Congress on General and Applied Chemistry: Abstracts of Papers, 5 vols.), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 2016, p. 92.Google Scholar
  17. 17.
    Luis, P. and Van der Bruggen, B., Exergy analysis of energy-intensive production processes: Advancing towards a sustainable chemical industry, J. Chem. Technol. Biotechnol., 2014, vol. 89, no. 9, pp. 1288–1303. CrossRefGoogle Scholar
  18. 18.
    Zakharova, E.M., Kuznetsov, N.A., Minashina, I.K., et al., Modeling of algorithms for the optimization of a multiagent control system for transportation processes, Vestn. Mezhdunar. Akad. Sist. Issled., Inf., Ekol., Ekon., 2014, vol. 16, no. 1, p. 9.Google Scholar
  19. 19.
    Chernykh, I.V., Simulink: sreda sozdaniya inzhenernykh prilozhenii (Simulink: An Environment for the Development of Engineering Applications), Moscow: Dialog-MIFI, 2003.Google Scholar
  20. 20.
    Olsson, G. and Piani, D., Tsifrovye sistemy avtomatizatsii i upravleniya (Digital Automation and Control Systems), St. Petersburg: Nevskii Dialekt, 2001, 3rd ed.Google Scholar
  21. 21.
    Bukhalev, V.A., Optimal’noe sglazhivanie v sistemakh so sluchainoi skachkoobraznoi strukturoi (Optimal Smoothing in Systems with a Random Stepwise Structure), Moscow: Fizmatlit, 2013.Google Scholar
  22. 22.
    Kulakov, G.T., Analiz i sintez sistem avtomaticheskogo regulirovaniya (Analysis and Synthesis of Automatic Control Systems), Minsk: Tekhnoprint, 2003.Google Scholar
  23. 23.
    Bokovikov, B.A., Bragin, V.V., and Shvydkii, V.S., Role of the thermal-inertia zone in conveyer roasting machines, Steel Transl., 2014, vol. 44, no. 8, p. 595.CrossRefGoogle Scholar
  24. 24.
    Bragin, V.V., Bokovikov, B.A., Naidich, M.I., Gruzdev, A.I., and Shvydkii, V.S., Relation between the productivity and fuel consumption in roasting machines, Steel Transl., 2014, vol. 44, no. 8, p. 590.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. P. Meshalkin
    • 1
  • A. Yu. Puchkov
    • 2
  • M. I. Dli
    • 2
  • V. I. Bobkov
    • 2
    Email author
  1. 1.Mendeleev University of Chemical Technology of RussiaMoscowRussia
  2. 2.Moscow Power Engineering Institute, Smolensk BranchSmolenskRussia

Personalised recommendations