Iodomethane Vapor Oxidation in Air Medium

  • A. O. Merkushkin
  • A. V. ObruchikovEmail author
  • E. P. Magomedbekov


Thermal decomposition and chemical oxidation of iodomethane under dynamic conditions have been studied. It has been found by differential thermogravimetric analysis with subsequent mass spectrometry that iodine(V) oxide is the product of the chemical interaction of iodomethane with ozone. It can be effectively captured on an inert ceramic carrier at a relatively low temperature.


iodomethane oxidation thermal decomposition radioiodine collection gaseous radioactive waste 



  1. 1.
    Kabat, M.J., Chemical behavior of radioiodine under loss of coolant accident conditions, Proc. 16th DOE Nuclear Air Cleaning Conference (San Diego, 1980), First, M.W., Ed., Boston: Harvard Univ., 1981, pp. 867–890.Google Scholar
  2. 2.
    Design of Off-Gas and Air Cleaning Systems at Nuclear Power Plants, IAEA Technical Report Series, no. 274, Vienna: International Atomic Energy Agency (IAEA), 1987.Google Scholar
  3. 3.
    González-García, C.M., González, J.F., and Román, S., Removal efficiency of radioactive methyl iodide on TEDA-impregnated activated carbons, Fuel Process. Technol., 2011, vol. 92, no. 2, pp. 247–252. CrossRefGoogle Scholar
  4. 4.
    Obruchikov, A.V. and Lebedev, S.M., Study on adsorption removal of radioactive methyl iodide by modified Busofit carbon fibers, Inorg. Mater.: Appl. Res., 2012, vol. 3, no. 5, pp. 398–400. CrossRefGoogle Scholar
  5. 5.
    Rastunov, L.N., Magomedbekov, E.P., Obruchikov, A.V., and Lomazova, L.A., Evaluation of the sorbent layer thickness in iodine filters, At. Energy (N. Y., NY, U. S.), 2011, vol. 110, no. 1, pp. 68–72. Google Scholar
  6. 6.
    Park, G.-I., Kim, I.-T., Lee, J.K., Ryu, S.K., and Kim, J.H., Effect of temperature on the adsorption and desorption characteristics of methyl iodide over TEDA-impregnated activated carbon, Carbon Sci., 2001, vol. 2, no. 1, pp. 9–14.Google Scholar
  7. 7.
    Faghihian, H., Ghannadi Maragheh, M., and Malekpour, A., Adsorption of radioactive iodide by natural zeolites, J. Radioanal. Nucl. Chem., 2002, vol. 254, no. 3, pp. 545–550. CrossRefGoogle Scholar
  8. 8.
    Chapman, K.W., Chupas, P.J., and Nenoff, T.M., Radioactive iodine capture in silver-containing mordenites through nanoscale silver iodide formation, J. Am. Chem. Soc., 2010, vol. 132, no. 26, p. 8897. CrossRefGoogle Scholar
  9. 9.
    Kulyukhin, S.A., Mizina, L.V., Rumer, I.A., and Konovalova, N.A., Thermal decomposition of CH3 131I in a gas flow, Radiochemistry, 2013, vol. 55, no. 4, p. 404. CrossRefGoogle Scholar
  10. 10.
    Rakness, K., Gordon, G., Langlais, B., Masschelein, W., Matsumoto, N., Richard, Y., Robson, C.M., and Somiya, I., Guideline for measurement of ozone concentration in the process gas from an ozone generator, Ozone: Sci. Eng., 1996, vol. 18, no. 3, p. 209. CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. O. Merkushkin
    • 1
  • A. V. Obruchikov
    • 1
    Email author
  • E. P. Magomedbekov
    • 1
  1. 1.Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations