Advertisement

Theoretical Foundations of Chemical Engineering

, Volume 53, Issue 5, pp 793–814 | Cite as

Bottom Bed in Circulating Fluidized Bed Combustor

  • V. I. KovenskiiEmail author
Article
  • 1 Downloads

Abstract

A bottom bed, similar to a heterogeneous fluidized bed, in a circulating fluidized bed combustor is considered. It is shown that the formation of the bottom bed is contributed to not only by the gravitational force and the drag force, but also by an additional force produced by the circulation of bed-forming particles. A procedure for calculating the parameters of the bottom bed with consideration for this force is proposed. The conditions of the formation and existence of such a bed are formulated. The transport velocity, average porosity, residence time, and other characteristics of the bottom bed are determined under typical operating conditions of combustors. Calculations for published experiments are carried out. The results are compared with available experimental data.

Keywords:

combustor circulating fluidized bed bottom bed bottom bed existence conditions transport velocity bottom bed parameters 

Notes

REFERENCES

  1. 1.
    Wang, C. and Zhu, J., Developments in the understanding of gas-solid contact efficiency in the circulating fluidized bed riser reactor: A review, Chin. J. Chem. Eng., 2016, vol. 24, pp. 53–62.  https://doi.org/10.1016/j.cjche.2015.07.004 CrossRefGoogle Scholar
  2. 2.
    Arjunwadkar, A., Basu, P., and Acharya, B., A review of some operation and maintenance issues of CFBC boilers, Appl. Therm. Eng., 2016, vol. 102, pp. 672–694.  https://doi.org/10.1016/j.applthermaleng.2016.04.008 CrossRefGoogle Scholar
  3. 3.
    Tuponogov, V.G. and Baskakov, A.P., The influence of the gas distributing grid diameter on the transition velocity and hydrodynamics of the bottom bed in circulating fluidized bed installations, Therm. Eng., 2013, vol. 60, no. 11, pp. 808–812.  https://doi.org/10.1134/S0040601513110116 CrossRefGoogle Scholar
  4. 4.
    Schouten, J.C., Zijerveld, R.C., and Bleek, C.M., Scale-up of bottom-bed dynamics and axial solids-distribution in circulating fluidized beds of Geldart-B particles, Chem. Eng. Sci., 1999, vol. 54, nos. 13–14, pp. 2103–2112.  https://doi.org/10.1016/S0009-2509(98)00352-2 CrossRefGoogle Scholar
  5. 5.
    Mo, X., Wang, P., Yang, H., Junfu, L., Zhang, M., and Liu, Q., A hydrodynamic model for circulating fluidized beds with low riser and tall riser, Powder Technol., 2015, vol. 274, pp. 146–153.  https://doi.org/10.1016/j.powtec.2015.01.022 CrossRefGoogle Scholar
  6. 6.
    Cho, D., Choi, J.-H., Khurram, M.S., Jo, S.-H., Ryu, H.-J., Park, Y.C., and Yi, C.-K., Solids circulation rate and static bed height in a riser of a circulating fluidized bed, Korean J. Chem. Eng., 2015, vol. 32, no. 2, pp. 284–291.  https://doi.org/10.1007/s11814-014-0209-x CrossRefGoogle Scholar
  7. 7.
    Mahmoudi, S., Baeyens, J., and Seville, J., The solids flow in the CFB-riser quantified by single radioactive particle tracking, Powder Technol., 2011, vol. 211, pp. 135–143.  https://doi.org/10.1016/j.powtec.2011.04.011 CrossRefGoogle Scholar
  8. 8.
    Pallarès, D. and Johnsson, F., Macroscopic modelling of fluid dynamics in large-scale circulating fluidized beds, Prog. Energy Combust. Sci., 2006, vol. 32, pp. 539–569.  https://doi.org/10.1016/j.pecs.2006.02.002 CrossRefGoogle Scholar
  9. 9.
    Schlichthaerle, P. and Werther, J., Solids mixing in the bottom zone of a circulating fluidized bed, Powder Technol., 2001, vol. 120, nos. 1–2, pp. 21–33.  https://doi.org/10.1016/S0032-5910(01)00342-4 CrossRefGoogle Scholar
  10. 10.
    Svensson, A., Johnsson, F., and Leckner, B., Bottom bed regimes in a circulating fluidized bed boiler, Int. J. Multiphase Flow, 1996, vol. 22, no. 6, pp. 1187–1204.  https://doi.org/10.1016/0301-9322(96)00025-0 CrossRefGoogle Scholar
  11. 11.
    Johnsson, F., Zijerveld, R.C., Schouten, J.C., Bleek, C.M., and Leckner, B., Characterization of fluidization regimes by time-series analysis of pressure fluctuations, Int. J. Multiphase Flow, 2000, vol. 26, pp. 663–715.  https://doi.org/10.1016/S0301-9322(99)00028-2 CrossRefGoogle Scholar
  12. 12.
    Svensson, A., Johnsson, F., and Leckner, B., Bottom bed regimes in a circulating fluidized bed boiler, Int. J. Multiphase Flow, 1996, vol. 22, no. 6, pp. 1187–1204.  https://doi.org/10.1016/0301-9322(96)00025-0 CrossRefGoogle Scholar
  13. 13.
    Svensson, A., Johnsson, F., and Leckner, B., Fluidization regimes in fluidized bed, Powder Technol., 1996, vol. 68, pp. 299–312.CrossRefGoogle Scholar
  14. 14.
    Gungor, A., One dimensional numerical simulation of small scale CFB combustors, Energy Convers. Manage., 2009, vol. 50, no. 3, pp. 711–722.  https://doi.org/10.1016/j.enconman.2008.10.003 CrossRefGoogle Scholar
  15. 15.
    Gungor, A. and Eskin, N., Hydrodynamic modeling of a circulating fluidized bed, Powder Technol., 2007, vol. 172, pp. 1–13.  https://doi.org/10.1016/j.powtec.2006.10.035 CrossRefGoogle Scholar
  16. 16.
    Schlichthaerle, P. and Werther, J., Axial pressure profile and solids concentration distributions in the CFB bottom zone, Proc. 6th International Conference on Circulating Fluidized Beds, Würzburg, Germany, 1999, p. 185.Google Scholar
  17. 17.
    Markeev, A.P., Teoreticheskaya mekhanika (Theoretical Mechanics), Moscow: CheRo, 1999.Google Scholar
  18. 18.
    Aerov, M.E. and Todes, O.M., Gidravlicheskie i teplovye osnovy raboty apparatov so statsionarnym i kipyashchim zernistym sloem (Hydraulic and Thermal Fundamentals of the Operation of Apparatuses with Fixed and Fluidized Beds), Leningrad: Khimiya, 1968.Google Scholar
  19. 19.
    El’sgol’ts, L.E., Differentsial’nye uravneniya i variatsionnoe ischislenie (Differential Equations and Calculus of Variations), Moscow: Nauka, 1969.Google Scholar
  20. 20.
    Todes, O.M. and Tsitovich, O.B., Apparaty s kipyashchim zernistym sloem. Gidravlicheskie i teplovye osnovy raboty (Fluidized Bed Apparatuses: Hydraulic and Thermal Fundamentals of Operation), Leningrad: Khimiya, 1981.Google Scholar
  21. 21.
    Kovenskii, V.I., Calculation of the parameters of an ensemble of particles in a well-stirred fluidized-bed reactor, Theor. Found. Chem. Eng., 2006, vol. 40, no. 2, pp. 190–202.  https://doi.org/10.1134/S0040579506020126 CrossRefGoogle Scholar
  22. 22.
    Kovenskii, V.I., Numerical calculation of parameters of an ensemble of particles in a perfectly mixed fluidized-bed reactor, Theor. Found. Chem. Eng., 2014, vol. 48, no. 1, pp. 13–26.  https://doi.org/10.1134/S0040579514010047 CrossRefGoogle Scholar
  23. 23.
    Johnsson, F. and Svensson, A., Vertical bulk density distribution in a CFB-furnace, Proc. IEA Meeting on Mathematical Modelling, San Diego, 1993, p. 1.Google Scholar
  24. 24.
    Svensson, A., Johnsson, F., and Leckner, B., Fluid-dynamics of the bottom bed of circulating fluidized bed boilers, Proc. 12th International Conference on Fluidized Bed Combustion, Rubow, L.N., Ed., New York: American Society of Mechanical Engineers (ASME), 1993, vol. 2, pp. 887–897.Google Scholar
  25. 25.
    Johnsson, F. and Leckner, B., Vertical distribution of solids in a CFB-furnace, Proc. 13th International Conference on Fluidized Bed Combustion, Orlando, 1995, p. 1.Google Scholar
  26. 26.
    van der Schaaf, J., Schouten, J.C., Johnsson, F., and van den Bleek, C.M., Bypassing of gas through bubble chains and jets in circulating fluidized beds, Proc. 6th International Conference on Circulating Fluidized Beds, Würzburg, Germany, 1999, p. 47.Google Scholar
  27. 27.
    Johnsson, F., Sternens, J., Leckner, B., Wiesendorf, V., Hartge, E.-U., Werther, J., Montat, D., and Briand, P., Fluid dynamics of the bottom zone of CFB combustors, Proc. 6th International Conference on Circulating Fluidized Beds, Würzburg, Germany, 1999, p. 113.Google Scholar
  28. 28.
    Bai, D. and Kato, K., Saturation carrying capacity of gas and flow regimes in CFB, J. Chem. Eng. Jpn., 1995, vol. 28, no. 2, pp. 179–185.  https://doi.org/10.1252/jcej.28.179 CrossRefGoogle Scholar
  29. 29.
    Teplitskii, Yu.S. and Kovenskii, V.I., On the circulating boiling bed energy, J. Eng. Phys. Thermophys., 2009, vol. 82, no. 4, p. 623.  https://doi.org/10.1007/s10891-009-0242-5 CrossRefGoogle Scholar
  30. 30.
    Xua, G., Hartgea, E.-U., Werther, J., and Gao, S., Saturation carrying capacity at high Archimedes number of vertical concurrent gas-particle flow, Chem. Eng. Sci., 2006, vol. 61, pp. 7115–7124.  https://doi.org/10.1016/j.ces.2006.07.039 CrossRefGoogle Scholar
  31. 31.
    Xu, G., Nomura, K., Gao, S., and Kato, K., More fundamentals of dilute suspension collapse and choking for vertical conveying systems, AIChE J., 2001, vol. 47, no. 10, pp. 2177– 2196.  https://doi.org/10.1002/aic.690471006 CrossRefGoogle Scholar
  32. 32.
    Day, J.Y., Littman, H., and Morgan, M.H. III, A new choking correlation for vertical pneumatic conveying, Chem. Eng. Sci., 1990, vol. 45, pp. 355–360.  https://doi.org/10.1016/0009-2509(90)87105-2 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Petrokotel-VTSKS Ltd.St. PetersburgRussia

Personalised recommendations