Advertisement

On the Conditions of Clogging in a Hydrocyclone

  • J. Dueck
  • L. L. MinkovEmail author
Article
  • 4 Downloads

Abstract

Experimental data on the flow boundaries of a barite suspension depending on its concentration and volume flow rate for a 10 mm high-pressure hydrocyclone were presented. Computer simulation of phase separation in the high-pressure hydrocyclone was performed for a concentrated suspension. Qualitative agreement between the results of numerical modeling and experiment on the conditions of clogging of the hydrocyclone underflow was obtained.

Keywords:

hydrocyclone clogging concentrated suspension experiment numerical modeling 

Notes

REFERENCES

  1. 1.
    Heiskanen, K., Particle Classification, London: Chapman and Hall, 1993.Google Scholar
  2. 2.
    Bradley, D., The Hydrocyclone, London: Pergamon, 1965.Google Scholar
  3. 3.
    Schubert, H., Heidenreich, E., Liepe, F., and Neeße, Th., Mechanische Verfahrenstechnik, 3. Aufl. Leipzig: Deutscher Verlag fuer Grundstoffindustrie, 1990.Google Scholar
  4. 4.
    Ternovskii, I.G. and Kutepov, F.M., Gidrotsiklonirovanie (Hydrocycloning), Moscow: Nauka, 1994.Google Scholar
  5. 5.
    Neesse, Th., Dueck, J., Schwemmer, H., and Faghaly, M., Using a high pressure hydrocyclone for solids classification in the submicron range, Miner. Eng., 2015, vol. 71, p. 85.CrossRefGoogle Scholar
  6. 6.
    Schubert, H. and Neesse, T., A hydrocyclone separation model in consideration of the multi-phase flow, Proc. International Conference on Hydrocyclones, Cambridge: BHRA Fluid Engineering, 1980, p. 23.Google Scholar
  7. 7.
    Dyakovski, T. and Williams, R.A., Prediction of high solids concentration regions within a hydrocyclone, Powder Technol., 1996, vol. 87, p. 43.CrossRefGoogle Scholar
  8. 8.
    Dueck, J.G., Matvienko, O.V., and Neesse, T., Modeling of hydrodynamics and separation in a hydrocyclone, Theor. Found. Chem. Eng., 2000, vol. 34, no. 5, p. 428.CrossRefGoogle Scholar
  9. 9.
    Ko, J., Zahrai, S., Macchion, O., and Vomhoff, H., Numerical modeling of highly swirling flows in a through-flow cylindrical hydrocyclone, AIChE J., 2006, vol. 52, no. 10, p. 3334.CrossRefGoogle Scholar
  10. 10.
    Neesse, T. and Dueck, J., Dynamic modelling of the hydrocyclone, Miner. Eng., 2007, vol. 20, no. 4, p. 380.CrossRefGoogle Scholar
  11. 11.
    Min’kov, L.L. and Dueck, J.H., Numerical modeling of a nonmonotonic separation hydrocyclone curve, J. Eng. Phys. Thermophys., 2012, vol. 85, no. 6, p. 1317.CrossRefGoogle Scholar
  12. 12.
    Schubert, H., Bohme, S., Neesse, Th., and Espig, D., Classification in turbulent two-phase flows, Aufbereitungstechnik, 1986, vol. 27, no. 6, p. 295.Google Scholar
  13. 13.
    Neesse, Th., Schubert, H., and Graichen, K., Practical and theoretical aspects of dense-flow classification, Aufbereitungstechnik, 1991, vol. 32, no. 9, p. 459.Google Scholar
  14. 14.
    Dueck, J., Modeling for Solid–Liquid Separation, Saarbrücken: Lambert Academic, 2015.Google Scholar
  15. 15.
    Dueck, J., Schneider, M., and Neesse, Th., Numerical calculation of the umbrella and rope discharge of a hydrocyclone, Aufbereitungstechnik, 2003, vol. 44, no. 8, p. 13.Google Scholar
  16. 16.
    Neesse, Th., Schneider, M., Dueck, J., Golyk, V., Buntenbach, S., and Tiefel, H., Hydrocyclone operation at the transition point rope/spray discharge, Miner. Eng., 2004, vol. 17, no. 5, p. 733.CrossRefGoogle Scholar
  17. 17.
    ANSYS Fluent: User Guide. Release 14.0, Canonsburg, Pa.: ANSYS, Inc., 2011.Google Scholar
  18. 18.
    Nigmatulin, R.I., Dinamika mnogofaznykh sred: v 2 ch. (Dynamics of Multiphase Media in Two Volumes), Moscow: Nauka, 1987, vol. 1.Google Scholar
  19. 19.
    Manninen, M., Taivassalo, V., and Kallio, S., On the Mixture Model for Multiphase Flow, VTT Publications, vol. 288, Espoo: Technical Research Centre of Finland, 1996.Google Scholar
  20. 20.
    Launder, B.E. and Spalding, D.B., Lectures in Mathematical Models of Turbulence, London: Academic, 1972.Google Scholar
  21. 21.
    Yakhot, V. and Orszag, S.A., Renormalization group analysis of turbulence: I. Basic theory, J. Sci. Comput., 1986, vol. 1, no. 1, p. 1.CrossRefGoogle Scholar
  22. 22.
    Csanady, G.T., Turbulent diffusion of heavy particles in the atmosphere, J. Atmos. Sci., 1963, vol. 20, p. 201.CrossRefGoogle Scholar
  23. 23.
    Simonin, C. and Viollet, P.L., Predictions of an oxygen droplet pulverization in a compressible subsonic coflowing hydrogen flow, Numerical Methods for Multiphase Flows: Spring Meeting of the Fluids Engineering Division, Toronto, 1990, p. 65.Google Scholar
  24. 24.
    Brouwers, H.J.H., Viscosity of a concentrated suspension of rigid monosized particles, Phys. Rev. E, 2010, vol. 81, p. 051402.CrossRefGoogle Scholar
  25. 25.
    Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Series in Computational Methods in Mechanics and Thermal Sciences, New York: Hemisphere, 1980.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Erlangen-Nuremberg UniversityErlangenGermany
  2. 2.German-Kazakh UniversityAlmatyKazakhstan
  3. 3.Tomsk State UniversityTomskRussia

Personalised recommendations