Advertisement

Computation of the Solubility of Aromatic Hydrocarbons in Supercritical Media Based on the Entropic Method of Similarity Theory

  • T. R. BilalovEmail author
  • F. M. Gumerov
Article
  • 12 Downloads

Abstract

The results of generalizing the solubility of aromatic hydrocarbons in supercritical carbon dioxide using the entropy method of similarity theory are presented. Experimental data from different authors on the solubility of 11 substances studied in a temperature range from 300 to 350 K (728 experimental points and 50 isotherms) are subjected to generalization. It is shown that the dependency makes it possible to compute the solubility of aromatic hydrocarbons subjected to generalization in supercritical carbon dioxide to an acceptable accuracy.

Keywords:

solubility aromatic hydrocarbons supercritical carbon dioxide saturated vapor pressure description generalization forecasting crossover behavior of solubility isotherms 

Notes

REFERENCES

  1. 1.
    Gumerov, F.M., Amirchanov, D.G., Usmanov, A.G., and Le Neindre, B., The thermal diffusivity of argon in the critical region, Int. J. Thermophys., 1991, vol. 12, no. 1, p. 67.  https://doi.org/10.1007/BF00506123 CrossRefGoogle Scholar
  2. 2.
    Le Neindre, B., Garrabos, Y., Gumerov, F., and Sabirzianov, A., Measurements of the thermal conductivity of HFC-134a in the supercritical region, J. Chem. Eng. Data, 2009, vol. 54, no. 9, p. 2678.  https://doi.org/10.1021/je900210h CrossRefGoogle Scholar
  3. 3.
    Le Neindre, B., Lombardi, G., Desmarest, P.H., Kayser, M., Zaripov, Z.I., Gumerov, F.M., and Garrabos, Y., Measurements of the thermal conductivity of ethene in the supercritical region, Fluid Phase Equilib., 2018, vol. 459, p. 119.  https://doi.org/10.1016/j.fluid.2017.11.013 CrossRefGoogle Scholar
  4. 4.
    Hung, T.N., Gumerov, F., Gabitov, F., Usmanov, R., Hairutdinov, V., and Le Neindre, B., Improvement of the water brewing of Vietnamese green tea by pretreatment with supercritical carbon dioxide, J. Supercrit. Fluids, 2012, vol. 62, p. 73.  https://doi.org/10.1016/j.supflu.2011.10.017 CrossRefGoogle Scholar
  5. 5.
    Usmanov, R.A., Gumerov, F.M., Gabitov, F.R., Zaripov, Z.I., Shamsetdinov, F.N., and Abdulagatov, I.M., High yield biofuel production from vegetable oils with supercritical alcohols, Liquid Fuels: Types, Properties and Production, Carasillo, D.A., Ed., New York: Nova Science, 2012, ch. 3, p. 99.Google Scholar
  6. 6.
    Khairutdinov, V.F., Akhmetzyanov, T.R., Gumerov, F.M., Khabriev, I.Sh., and Farakhov, M.I., Supercritical fluid propane–butane extraction treatment of oil-bearing sands, Theor. Found. Chem. Eng., 2017, vol. 51, no. 3, pp. 299–306.  https://doi.org/10.1134/S0040579517030083 CrossRefGoogle Scholar
  7. 7.
    Gumerov, F.M., Sagdeev, A.A., and Amirkhanov, D.G., Solubility of Substances in Supercritical Fluid Media, Saarbrücken: Lambert Academic, 2016.Google Scholar
  8. 8.
    Li, H., Jia, D., Li, S., and Liu, R., Correlating and predicting the solubilities of structurally similar organic solid compounds in supercritical CO2 using the compressed gas model and the reference solubilities, Fluid Phase Equilib., 2013, vol. 350, p. 13.  https://doi.org/10.1016/j.fluid.2013.04.010 CrossRefGoogle Scholar
  9. 9.
    Nasri, L., Bensaad, S., and Bensetiti, Z., Correlation and prediction of the solubility of solid solutes in chemically diverse supercritical fluids based on the expanded liquid theory, Adv. Chem. Eng. Sci., 2013, vol. 3, no. 4, p. 255.  https://doi.org/10.4236/aces.2013.34033 CrossRefGoogle Scholar
  10. 10.
    Trabelsi, F., Abaroudi, K., and Recasens, F., Predicting the approximate solubilities of solids in dense carbon dioxide, J. Supercrit. Fluids, 1999, vol. 14, no. 2, p. 151.  https://doi.org/10.1016/S0896-8446(98)00117-X CrossRefGoogle Scholar
  11. 11.
    da Silva, M.V. and Barbosa, D., Prediction of the solubility of aromatic components of wine in carbon dioxide, J. Supercrit. Fluids, 2004, vol. 31, no. 1, p. 9.  https://doi.org/10.1016/j.supflu.2003.09.018 CrossRefGoogle Scholar
  12. 12.
    Hartono, R., Mansoori, G.A., and Suwono, A., Prediction of solubility of biomolecules in supercritical solvents, Chem. Eng. Sci., 2001, vol. 56, p. 6949.  https://doi.org/10.1016/S0009-2509(01)00327-X CrossRefGoogle Scholar
  13. 13.
    Manohar, B. and Sankar, K.U., Prediction of solubility of Psoralea corylifolia L. Seed extract in supercritical carbon dioxide by equation of state models, Theor. Found. Chem. Eng., 2011, vol. 45, p. 409.  https://doi.org/10.1134/S0040579511040087 CrossRefGoogle Scholar
  14. 14.
    Ajchariyapagorn, A., Douglas, P.L., Douglas, S., Pongamphai, S., and Teppaitoon, W., Prediction of solubility of solid biomolecules in supercritical solvents using group contribution methods and equations of state, Am. J. Food Technol., 2008, vol. 3, p. 275.  https://doi.org/10.3923/ajft.2008.275.293 CrossRefGoogle Scholar
  15. 15.
    Madras, G., Kulkarni, C., and Modak, J., Modeling the solubilities of fatty acids in supercritical carbon dioxide, Fluid Phase Equilib., 2003, vol. 209, p. 207.  https://doi.org/10.1016/S0378-3812(03)00148-1 CrossRefGoogle Scholar
  16. 16.
    Coimbra, P., Duarte, C.M.M., and de Sousa, H.C., Cubic equation-of-state correlation of the solubility of some anti-inflammatory drugs in supercritical carbon dioxide, Fluid Phase Equilib., 2006, vol. 239, p. 188.  https://doi.org/10.1016/j.fluid.2005.11.028 CrossRefGoogle Scholar
  17. 17.
    Del Valle, J.M. and Aguilera, J.M., An improved equation for predicting the solubility of vegetable oils in supercritical carbon dioxide, Ind. Eng. Chem. Res., 1988, vol. 27, p. 1551.  https://doi.org/10.1021/ie00080a036 CrossRefGoogle Scholar
  18. 18.
    Nasri, L., Bensetiti, Z., and Bensaad, S., Correlation of the solubility of some organic aromatic pollutants in supercritical carbon dioxide based on the UNIQUAC equation, Energy Procedia, 2012, vol. 18, p. 1261.  https://doi.org/10.1016/j.egypro.2012.05.142 CrossRefGoogle Scholar
  19. 19.
    Rathnam, V.M., Lamba, N., and Madras, G., Evaluation of new density based model to correlate the solubilities of ricinoleic acid, methyl ricinoleate and methyl 10-undecenoate in supercritical carbon dioxide, J. Supercrit. Fluids, 2017, vol. 130, p. 357.  https://doi.org/10.1016/j.supflu.2017.07.017 CrossRefGoogle Scholar
  20. 20.
    Tomberli, B., Goldman, S., and Gray, C., Predicting solubility in supercritical solvents using estimated virial coefficients and fluctuation theory, Fluid Phase Equilib., 2001, vol. 187, p. 111.  https://doi.org/10.1016/S0378-3812(01)00531-3 CrossRefGoogle Scholar
  21. 21.
    Sparks, D.L., Hernandez, R., and Estevez, L.A., Evaluation of density-based models for the solubility of solids in supercritical carbon dioxide and formulation of a new model, Chem. Eng. Sci., 2008, vol. 63, no. 17, p. 4292.  https://doi.org/10.1016/j.ces.2008.05.031 CrossRefGoogle Scholar
  22. 22.
    Zakharov, A.A., Bilalov, T.R., and Gumerov, F.M., Solubility of ammonium palmitate in supercritical carbon dioxide, Russ. J. Phys. Chem. B, 2016, vol. 10, p. 1092.  https://doi.org/10.1134/S1990793116070204 CrossRefGoogle Scholar
  23. 23.
    Jaddoa, A.A., Zakharov, A.A., Bilalov, T.R., Nakipov, R.R., Gabitov, I.R., Zaripov, Z.I., and Gumerov, F.M., Some thermodynamic processes of anthracite-carbon dioxide mixture in supercritical fluid state, Russ. J. Phys. Chem. B, 2016, vol. 10, p. 1180.  https://doi.org/10.1134/S1990793116080029 CrossRefGoogle Scholar
  24. 24.
    Bilalov, T.R., Gumerov, F.M., and Gatina, R.F., Solubility of 2,4,6-trinitrotoluene and its extraction from flammable hard caps with the use of pure and modified supercritical CO2, Sverkhkrit. Flyuidy: Teor. Prakt., 2016, vol. 11, no. 4, p. 17.Google Scholar
  25. 25.
    Gumerov, F.M., Le Neindre, B., Bilalov, T.R., et al., Regeneration of Spent Catalyst and Impregnation of Catalyst by Supercritical Fluid, New York: Nova Science, 2016.Google Scholar
  26. 26.
    Bilalov, T.R., Zakharov, A.A., Jaddoa, A.A., and Gumerov, F.M., and Le Neindre, B., Treatment of different types of cotton fabrics by ammonium palmitate in a supercritical CO2 environment, J. Supercrit. Fluids, 2017, vol. 130, p. 47.  https://doi.org/10.1016/j.supflu.2017.07.036 CrossRefGoogle Scholar
  27. 27.
    Usmanov, A.G., On one additional condition of the similarity of molecular processes, in Teplofizika i teplovoe modelirovanie (Thermal Physics and Thermal Modeling), Moscow: Akad. Nauk SSSR, 1959, p. 298.Google Scholar
  28. 28.
    Sabirzyanov, A.N. and Gumerov, F.M., Generalizing binary solubility data for low-volatile liquids in supercritical fluids, Theor. Found. Chem. Eng., 2001, vol. 35, no. 2, pp. 129–132.  https://doi.org/10.1023/a:1010373321731 CrossRefGoogle Scholar
  29. 29.
    Gupta, R.B. and Shim, J.-J., Solubility in Supercritical Carbon Dioxide, Boca Raton, Fla.: CRC, 2006.CrossRefGoogle Scholar
  30. 30.
    Usmanov, A.G. and Berezhnoi, A.N., The use of the similarity method in studying mass transfer processes, Zh. Fiz. Khim., 1960, vol. 34, no. 4, p. 907.Google Scholar
  31. 31.
    Altunin, V.V., Teplofizicheskie svoistva dvuokisi ugleroda (Thermal and Physical Properties of Carbon Dioxide), Moscow: Izd. Standartov, 1975.Google Scholar
  32. 32.
    Yamini, Y. and Bahramifar, N., Solubility of polycyclic aromatic hydrocarbons in supercritical carbon dioxide, J. Chem. Eng. Data, 2000, vol. 41, no. 1, p. 53.  https://doi.org/10.1021/je990129s CrossRefGoogle Scholar
  33. 33.
    Anitescu, G. and Tavlarides, L.L., Solubilities of solids in supercritical fluids–I. New quasistatic experimental method for polycyclic aromatic hydrocarbons (PAHs) + pure fluids, J. Supercrit. Fluids, 1997, vol. 10, p. 175.  https://doi.org/10.1016/S0896-8446(97)00024-7 CrossRefGoogle Scholar
  34. 34.
    Goodarznia, I. and Esmaeilzadeh, F., Solubility of an anthracene, phenanthrene, and carbazole mixture in supercritical carbon dioxide, J. Chem. Eng. Data, 2002, vol. 47, no. 2, p. 333.  https://doi.org/10.1021/je010093f CrossRefGoogle Scholar
  35. 35.
    Lee, L.-S., Huang, J.-F., and Zhu, O.-X., Solubilities of solid benzoic acid, phenanthrene, and 2,3-dimethylhexane in supercritical carbon dioxide, J. Chem. Eng. Data, 2001, vol. 46, no. 5, p. 1156.  https://doi.org/10.1021/je0100140 CrossRefGoogle Scholar
  36. 36.
    Sane, A., Taylor, S., Sun, Y.-P., and Thies, M.C., A semicontinuous flow apparatus for measuring the solubility of opaque solids in supercritical solutions, J. Supercrit. Fluids, 2004, vol. 28, nos. 2–3, p. 277.  https://doi.org/10.1016/S0896-8446(03)00046-9 CrossRefGoogle Scholar
  37. 37.
    Pauchon, V., Cisse, Z., Chavret, M., and Jose, J., A new apparatus for the dynamic determination of solid compounds solubility in supercritical carbon dioxide: Solubility determination of triphenylmethane, J. Supercrit. Fluids, 2004, vol. 32, nos. 1–3, p. 115.  https://doi.org/10.1016/j.supflu.2004.03.003 CrossRefGoogle Scholar
  38. 38.
    Diefenbacher, A. and Türk, M., Phase equilibria of organic solid solutes and supercritical fluids with respect to the RESS process, J. Supercrit. Fluids, 2002, vol. 22, no. 3, p. 175.  https://doi.org/10.1016/S0896-8446(01)00123-1 CrossRefGoogle Scholar
  39. 39.
    Kalaga, A. and Trebble, M., Density changes in supercritical solvent + hydrocarbon solute binary mixtures, J. Chem. Eng. Data, 1999, vol. 44, no. 5, p. 1063.  https://doi.org/10.1021/je990029m CrossRefGoogle Scholar
  40. 40.
    Sauceau, M., Fages, J., Letoumeau, J.J., and Richon, D., A novel apparatus for accurate measurements of solid solubilities in supercritical phases, Ind. Eng. Chem. Res., 2000, vol. 39, no. 12, p. 4609.  https://doi.org/10.1021/ie000181d CrossRefGoogle Scholar
  41. 41.
    Li, Q., Zhang, Z., Zhong, C., Liu, Y., and Zhou, Q., Solubility of solid solutes in supercritical carbon dioxide with and without cosolvents, Fluid Phase Equilib., 2003, vol. 207, nos. 1–2, p. 183.  https://doi.org/10.1016/S0378-3812(03)00022-0 CrossRefGoogle Scholar
  42. 42.
    Ngo, T.T., Bush, D., Eckert, C.A., and Liotta, C.L., Spectroscopic measurement of solid solubility in supercritical fluids, AIChE J., 2001, vol. 47, no. 11, p. 2566.  https://doi.org/10.1002/aic.690471119 CrossRefGoogle Scholar
  43. 43.
    Chung, S.T. and Shing, K.S., Multiphase behavior of binary and ternary systems of heavy aromatic hydrocarbons with supercritical carbon dioxide: Part I. Experimental results, Fluid Phase Equilib., 1992, vol. 81, p. 321.  https://doi.org/10.1016/0378-3812(92)85160-A CrossRefGoogle Scholar
  44. 44.
    McHugh, M. and Paulaitis, M.E., Solid solubilities of naphthalene and biphenyl in supercritical carbon dioxide, J. Chem. Eng. Data, 1980, vol. 25, no. 4, p. 326.  https://doi.org/10.1021/je60087a018 CrossRefGoogle Scholar
  45. 45.
    Bartle, K.D., Clifford, A.A., and Jafar, S.A., Measurement of solubility in supercritical fluids using chromatographic retention: The solubility of fluorene, phenanthrene, and pyrene in carbon dioxide, J. Chem. Eng. Data, 1990, vol. 35, no. 3, p. 355.  https://doi.org/10.1021/je00061a037 CrossRefGoogle Scholar
  46. 46.
    Johnston, K.P., Ziger, D.H., and Eckert, C.A., Solubilities of hydrocarbon solids in supercritical fluids. The augmented van der Waals treatment, Ind. Eng. Chem. Fundam., 1982, vol. 21, no. 3, p. 191.  https://doi.org/10.1021/i100007a001 CrossRefGoogle Scholar
  47. 47.
    Mukhopadhyay, M., Natural Extracts Using Supercritical Carbon Dioxide, Boca Raton, Fla.: CRC, 2000.CrossRefGoogle Scholar
  48. 48.
    Reid, R.C., Prausnitz, J.M., and Sherwood, T.K., The Properties of Gases and Liquids, New York: McGraw-Hill, 1977, 3rd ed.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Kazan National Research Technological UniversityKazanRussia
  2. 2.State Research Institute for Chemical ProductsKazanRussia

Personalised recommendations