Behavior of Carbon During the Synthesis of Mixed Nitrides of Uranium and Plutonium

  • Yu. V. Chamovskikh
  • N. G. Sergeev
  • N. N. Alekseenko
  • A. R. Beketov
  • M. V. Baranov
  • P. V. Volobuev
  • K. V. Zvonarev
  • R. A. ShishkinEmail author


The behavior of carbon in reactions of the synthesis of mixed nitrides of uranium and plutonium is determined not only by its excess content against stoichiometry, but also by the active influence of hydrogen and nitrogen as components of technological gas. It is also necessary to account for the impact of products of thermolysis of the binder. The results of a thermodynamic analysis of possible reactions during synthesis indicate the special behavior of phase UC1.91 in the process and bring up additional questions on the mechanism of removal of excess carbon under temperatures of synthesis.


behavior of carbon synthesis of mixed nitrides of uranium and plutonium excess carbon content of gas phase carbide phases 



  1. 1.
    Matthews, R.B., Chidester, K.M., Hoth, C.W., Mason, R.E., and Petty, R.L., Fabrication and testing of uranium nitride fuel for space power reactors, J. Nucl. Mater., 1988, vol. 151, pp. 2687–2692.CrossRefGoogle Scholar
  2. 2.
    Matthews, R.B., Baars, R.E., Blair, H.T., Butt, D.P., Mason, R.E., Stark, W.A., Storms, E.K., and Wallace, T.C., Fuels for space nuclear power and propulsion: 1983–1993, A Critical Review of Space Nuclear Power and Propulsion 1984–1993, El-Genk, M.S., Ed., New York: American Inst. of Physics, 1994.Google Scholar
  3. 3.
    Matthews, R.B., Overview of space reactor fuel development activities, Trans. Am. Nucl. Soc., 1991, vol. 64, pp. 266–267.Google Scholar
  4. 4.
    Matzke, H.J., Science of Advanced LMFBR Fuels: Solid State Physics, Chemistry, and Technology of Carbides, Nitrides, and Carbonitrides of Uranium and Plutonium, Amsterdam: North-Holland, 1986.Google Scholar
  5. 5.
    Muromura, T. and Tagawa, H., Formation of uranium mononitride by the reaction of uranium dioxide with carbon and ammonia and nitrogen – I. Synthesis of high purity UN, J. Nucl. Mater., 1977, vol. 71, pp. 65–72.CrossRefGoogle Scholar
  6. 6.
    Bauer, A.A., Nitride fuels: Properties and potentials, React. Technol., 1972, vol. 15, no. 2, pp. 87–104.Google Scholar
  7. 7.
    Rogozkin, B.D., Stepennova, N.M., Bergman, G.A., and Proshkin, A.A., Thermochemical stability, radiation testing, fabrication and reprocessing of mononitride fuel, At. Energy (N. Y., NY, U. S.), 2003, vol. 95, no. 6, pp. 835–844.Google Scholar
  8. 8.
    Nakagawa, T., Matsuoka, H., Sawa, M., and Hirota, M., Formation of uranium and cerium nitrides by the reaction of carbides with stream of ammonia and nitrogen, J. Nucl. Mater., 1997, vol. 247, no. 1, pp. 127–130.CrossRefGoogle Scholar
  9. 9.
    Pautasso, G., Richter, K., and Sari, C., Investigation of the reaction UO2 + x + PuO2 + C + N2 by thermogravimetry, J. Nucl. Mater., 1988, vol. 158, pp. 12–18. CrossRefGoogle Scholar
  10. 10.
    Brian, J., The synthesis and sintering of nitrides of uranium and dysprosium, MS Thesis, Boise, Idaho: Boise State Univ., 2008.Google Scholar
  11. 11.
    Suzuki, Y., Ogawa, T., Arai, Y., and Mukaiyama, T., Recent progress of research on nitride fuel cycle in JAERI, Proc. Fifth OECD/NEA Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation (Mol, Belgium, 1998), Paris: OECD Nuclear Energy Agency (NEA), 1999, pp. 213–222.Google Scholar
  12. 12.
    Dunwoody, J.T., Stanek, C.R., McClellan, K.J., Voit, S.L., and Hickman, R.R., Synthesis of uranium nitride and uranium carbide powder by carbothermic reduction, Proc. Global 2007: Advanced Nuclear Fuel Cycles and Systems (Boise, Idaho, 2007), La Grange Park, Ill.: American Nuclear Society, 2007, pp. 586–590.Google Scholar
  13. 13.
    Bardelle, P. and Warin, D., Mechanism and kinetics of the uranium—plutonium mononitride synthesis, J. Nucl. Mater., 1992, vol. 188, pp. 36–42.CrossRefGoogle Scholar
  14. 14.
    Jolkkonen, M., Steit, M., and Wakkenus, J., Thermo-chemical modelling of uranium-free nitride fuels, J. Nucl. Sci. Technol., 2004, vol. 4, pp. 157–165.Google Scholar
  15. 15.
    Kanno, M., Yamawaki, M., Kokubo, S., and Jchimiya, M., J. Nucl. Sci. Technol., 1975, vol. 12, no. 6, pp. 350–356.CrossRefGoogle Scholar
  16. 16.
    Muromura, T. and Tagawa, H., Mechanism and kinetics for the formation of uranium mononitride of the reaction of uranium dioxide with carbon and nitrogen, J. Am. Ceram. Soc., 1978, vol. 61, nos. 1–2, pp. 30–35.CrossRefGoogle Scholar
  17. 17.
    Arai, Y., Suzuki, Y., Iwai, T., Maeda, A., Sasayama, T., Shiozawa, K.-I., and Ohmichi, T., Fabrication of uranium-plutonium mixed nitride fuel pins for irradiation tests in JMTR, J. Nucl. Sci. Technol., 1993, vol. 30, no. 8, pp. 824–830. CrossRefGoogle Scholar
  18. 18.
    Muromure, T., Carbothermic synthesis of high purity plutonium nitride from plutonium oxide, J. Nucl. Sci. Technol., 1982, vol. 19, pp. 638–645.CrossRefGoogle Scholar
  19. 19.
    Greenhalgh, W.O. and Weber, E.T., The Carbothermic Synthesis of a Mixed Uranium–Plutonium Nitride, Office of Scientific & Technical Information Technical Reports, Report 4842584, Richland, Wash.: Pacific Northwest Laboratory, 1968.Google Scholar
  20. 20.
    Suzuki, Y., Arai, Y., and Sasayama, T., Carbothermic synthesis uranium-plutonium mixed carbide, J. Nucl. Sci. Technol., 1983, vol. 20, no. 7, pp. 603–610.CrossRefGoogle Scholar
  21. 21.
    Arkharov, V.I., Bogoslovskii, V.N., Zhuravleva, M.G., and Chufarov, G.I., On the reduction of iron oxides by graphite, Dokl. Akad. Nauk SSSR, 1954, vol. 98, no. 5, pp. 803–806.Google Scholar
  22. 22.
    Arkharov, V.I., Bogoslovskii, V.N., Zhuravleva, M.G., and Chufarov, G.I., Study of the reduction of iron oxides by graphite, Zh. Fiz. Khim., 1955, vol. 29, no. 2, pp. 272–279.Google Scholar
  23. 23.
    Godin, Yu.G., Tenishev, A.V., and Novikov, V.V., Fizicheskoe materialovedenie. Uchebnik dlya vuzov (Physical Materials Science: A Textbook for Institutions of Higher Education), Moscow: Nats. Issled. Yad. Univ. MIFI, 2008, vol. 6, part 2.Google Scholar
  24. 24.
    Litmakovich, I.S., Shkredov, G.V., and Makeev, V.A., Effect of the temperature regimes of the distillation of zinc stearate on the mechanical characteristics of sintered powdered brass, Poroshk. Metall., 1990, no. 4, pp. 99–108.Google Scholar
  25. 25.
    Voloshin, I.V., Bondarenko, B.I., and Voloshina, Ya.A., Hydrodynamics of passive protection of the muffle of sintering furnaces from contamination by the products of lubricant decomposition, Poroshk. Metall., 1994, vol. 9, no. 10, pp. 111–116.Google Scholar
  26. 26.
    Sherwood, T.K., Gilliland, E.R., and Ing, S.W., Hydrogen cyanide synthesis from its elements and from ammonia and carbon, Ind. Eng. Chem., 1960, vol. 52, pp. 601–604.CrossRefGoogle Scholar
  27. 27.
    Voerkelius, G.A., Über die Entstehung der Blausäure aus Ammoniak und Holzkohle, sowie aus Di- und Trimethylamin, Chem.-Ztg., 1909, vol. 33, pp. 1078–1081.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Yu. V. Chamovskikh
    • 1
  • N. G. Sergeev
    • 1
  • N. N. Alekseenko
    • 2
  • A. R. Beketov
    • 2
  • M. V. Baranov
    • 2
  • P. V. Volobuev
    • 2
  • K. V. Zvonarev
    • 2
  • R. A. Shishkin
    • 2
    Email author
  1. 1.AO SverdNIIKhimmashYekaterinburgRussia
  2. 2.Yeltsin Ural Federal UniversityYekaterinburgRussia

Personalised recommendations