Advertisement

Leaching SiO2 and Al2O3 Impurities from Leucoxene from the Yaregskoe Deposit by Sodium Hydroxide Solution

  • K. L. ZanaveskinEmail author
  • A. N. Maslennikov
  • S. M. Zanaveskina
  • G. S. Dmitriev
  • L. N. Zanaveskin
  • E. D. Politova
  • V. I. Vlasenko
CHEMICOMETALLURGICAL PROCESSES OF DEEP CONVERSION OF ORE, TECHNOGENIC, AND SECONDARY RAW MATERIALS
  • 6 Downloads

Abstract

This work presents the results of experimental studies of leaching aluminosilicate and quartz impurities from leucoxene from the Yaregskoe deposit by sodium hydroxide solution by sodium hydroxide solution. According to the data, the type of kinetic equation of SiO2 dissolution is defined, as are the equation parameters, including the orders by the reagents, the preexponential factor, and the activation energy. The activation energy of 77.2 ± 3.9 kJ/mol corresponds to the kinetic region of the reaction behavior.

Keywords:

leucoxene quartz dissolution aluminosilicate leaching titanium-containing raw materials kinetics activation energy 

Notes

FUNDING

The work was carried out within the framework of the Federal Target Program for IPS RAS with financial support from the Federal Agency for Scientific Organizations of Russia.

REFERENCES

  1. 1.
    IndexMundi—Country Facts, Titanium. http://www. indexmundi.com/en/commodities/minerals/titanium. Accessed November 17, 2016.Google Scholar
  2. 2.
    Filippou, D. and Hudon, G., Iron removal and recovery in the titanium dioxide feedstock and pigment industries, JOM, 2009, vol. 61, no. 10, pp. 36–42.  https://doi.org/10.1007/s11837-009-0150-3 CrossRefGoogle Scholar
  3. 3.
    Adipuri, A., Li, Y., Zhang, G., and Ostrovski, O., Chlorination of reduced ilmenite concentrates and synthetic rutile, Int. J. Miner. Process., 2011, vol. 100, nos. 3–4, pp. 166–171.  https://doi.org/10.1016/j.minpro.2011.07.005 CrossRefGoogle Scholar
  4. 4.
    Gázquez, M.J., Bolívar, J.P., Garcia-Tenorio, R., and Vaca, F., A review of the production cycle of titanium dioxide pigment, Mater. Sci. Appl., 2014, vol. 5, no. 7, pp. 441–458.  https://doi.org/10.4236/msa.2014.57048 Google Scholar
  5. 5.
    Braun, J.H., Baidins, A., and Marganski, R.E., TiO2 pigment technology: A review, Prog. Org. Coat., 1992, vol. 20, no. 2, pp. 105–138.  https://doi.org/10.1016/0033-0655(92)80001-D CrossRefGoogle Scholar
  6. 6.
    Stanawey, K.J., Overview of titanium dioxide feedstocks, Min. Eng. (Englewood, CO, U. S.), 1994, vol. 46, no. 12, pp. 1367–1370.Google Scholar
  7. 7.
    Pistorius, P.C., Ilmenite smelting: The basics, Proc. 6th International Heavy Minerals Conference “Back to Basics” (Hluhluwe, South Africa, 2007), Johannesburg: Southern African Inst. of Mining and Metallurgy, 2007, pp. 35–43.Google Scholar
  8. 8.
    Gosudarstvennyi doklad “O sostoyanii i ispol’zovanii mineral’no-syr’evykh resursov Rossiiskoi Federatsii v 2014 godu” (On the Status and Use of Mineral Resources of the Russian Federation in 2014: A State Report by the Ministry of Natural Resources and Environment of the Russian Federation), Kiselev, E.A., Ed., Moscow: Minist. Prir. Resur. i Ekol. Ross. Fed., 2015.Google Scholar
  9. 9.
    Zanaveskin, K.L., Maslennikov, A.N., Makhin, M.N., and Zanaveskin, L.N., Special features of the Yaregskoye deposit quartz-leucoxene rougher concentrate chemical and mineral composition, Obogashch. Rud, 2015, no. 5, pp. 25–32.  https://doi.org/10.17580/or.2015.05.05
  10. 10.
    Zablotskaya, Yu.V., Sadykhov, G.B., and Gocharenko, T.V., Autoclave leaching kinetics of a leucoxene concentrate with alkaline solutions, Russ. Metall. (Engl. Transl.), 2015, no. 1, pp. 1–5.  https://doi.org/10.1134/S0036029515010140
  11. 11.
    Deleuze, M., Goiffon, A., Ibanez, A., and Philippot, E., Solvent influence on kinetics and dissolution mechanism of quartz in concentrated basic media (NaOH, KOH, LiOH), J. Solid State Chem., 1995, vol. 118, no. 2, pp. 254–260.  https://doi.org/10.1006/jssc.1995.1341 CrossRefGoogle Scholar
  12. 12.
    Smith, P., The processing of high silica bauxites — Review of existing and potential processes, Hydrometallurgy, 2009, vol. 98, nos. 1–2, pp. 162–176.  https://doi.org/10.1016/j.hydromet.2009.04.015 CrossRefGoogle Scholar
  13. 13.
    Lainer, A.I., Eremin, N.I., Lainer, Yu.A., and Pevzner, I.Z., Proizvodstvo glinozema (Alumina Production), Moscow: Metallurgiya, 1978, 2nd ed.Google Scholar
  14. 14.
    Xu, B., Wingate, C., and Smith, P., The effect of surface area on the modelling of quartz dissolution under conditions relevant to the Bayer process, Hydrometallurgy, 2009, vol. 98, nos. 1–2, pp. 108–115.  https://doi.org/10.1016/j.hydromet.2009.04.006 CrossRefGoogle Scholar
  15. 15.
    Zanaveskin, K.L., Maslennikov, A.N., Dmitriev, G.S., and Zanaveskin, L.N., Autoclave processing of quartz-leucoxene concentrate (Yaregskoe deposit), Tsvetn. Met., 2016, no. 3, pp. 48–56.  https://doi.org/10.17580/tsm.2016.03.08
  16. 16.
    Levenspiel, O., Chemical Reaction Engineering, New York: Wiley, 1999, 3rd ed.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • K. L. Zanaveskin
    • 1
    • 2
    Email author
  • A. N. Maslennikov
    • 2
  • S. M. Zanaveskina
    • 2
  • G. S. Dmitriev
    • 1
    • 2
  • L. N. Zanaveskin
    • 1
  • E. D. Politova
    • 2
  • V. I. Vlasenko
    • 3
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of ScienceMoscowRussia
  2. 2.Karpov Institute of Physical Chemistry (Russian State Scientific Center)MoscowRussia
  3. 3.OAO YaregaRudaUkhtaRussia

Personalised recommendations