Designing and Preparing a Thin-Film Photocatalyst from Titanium Dioxide Nanotubes Codoped with Nitrogen and Fluorine

  • A. I. Mikhailichenko
  • A. N. MorozovEmail author
  • A. V. Denisenko


Thin-film nanostructured coatings have been produced electrolytically from TiO2 codoped with nitrogen and fluorine. The resulting films consist of individual TiO2 nanotubes with the polycrystalline anatase structure; they are characterized by narrow size distribution and a high degree of local self-organization. Diffuse reflectance spectroscopy demonstrates that the absorption edge of the samples codoped with nitrogen and fluorine is shifted towards the longer wavelength region of the solar spectrum by 200 nm with respect to pure TiO2. When irradiated with visible light, the synthesized TiO2 films exhibit high photocatalytic activity in the reaction of phenol oxidation in aqueous media.


titanium dioxide nanotubes photocatalysis phenol anodizing doping 



This study was supported by the Russian Foundation for Basic Research (project no. 16-33-00507 mol_a).


  1. 1.
    Artem’ev, Yu.M. and Ryabchuk, V.K., Vvedenie v geterogennyi fotokataliz (Introduction to Heterogeneous Photocatalysis), St. Petersburg: S.-Peterb. Gos. Univ., 1999.Google Scholar
  2. 2.
    Vorontsov, A.V., Barannik, G.B., Snegurenko, O.I., Savinov, E.N., and Parmon, V.N., Complete heterogeneous photocatalytic oxidation of acetone, ethanol, and diethyl ether vapors with air over honeycomb-supported TiO2, Kinet. Catal., 1997, vol. 38, no. 1, pp. 84–87.Google Scholar
  3. 3.
    Paramasivam, I., Jha, H., Liu, N., and Schmuki, P., A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures, Small, 2012, vol. 8, no. 20, pp. 3073–3103. CrossRefGoogle Scholar
  4. 4.
    Daghrir, R., Drogui, P., and Robert, D., Modified TiO2 for environmental photocatalytic applications: A review, Ind. Eng. Chem. Res., 2013, vol. 52, no. 10, pp. 3581–3599. CrossRefGoogle Scholar
  5. 5.
    Chen, X., Liu, L., Yu, P.Y., and Mao, S.S., Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science, 2011, vol. 331, no. 6018, pp. 746–750. CrossRefGoogle Scholar
  6. 6.
    Fang, Y., Huang, Y., Ni, Z., Wang, Z., Kang, S., Wang, Y., and Li, X., Co-modified commercial P25 TiO2 by Fe doping and g-C3N4 coating as high performance photocatalyst under visible light irradiation, Int. J. Electrochem. Sci., 2017, vol. 12, pp. 5951–5963. CrossRefGoogle Scholar
  7. 7.
    Di Valentin, C. and Pacchioni, G., Trends in non-metal doping of anatase TiO2: B, C, N and F, Catal. Today, 2013, vol. 206, pp. 12–18. CrossRefGoogle Scholar
  8. 8.
    Ren, J., Wang, W., Shang, M., Sun, S., and Gao, E., Heterostructured bismuth molybdate composite: Preparation and improved photocatalytic activity under visible-light irradiation, ACS Appl. Mater. Interfaces, 2011, vol. 3, no. 7, pp. 2529–2533. CrossRefGoogle Scholar
  9. 9.
    Seibel, H.A. II, Karen, P., Wagner, T.R., and Woodward, P.M., Synthesis and characterization of color variants of nitrogen- and fluorine-substituted TiO2, J. Mater. Chem., 2009, vol. 19, no. 4, pp. 471–477. CrossRefGoogle Scholar
  10. 10.
    Tszan, S., Avdeeva, A.V., Muradova, A.G., and Yurtov, E.V., Preparation of rod-shaped zinc oxide nanoparticles by the precipitation method, Khim. Tekhnol., 2014, vol. 15, no. 12, pp. 723–728.Google Scholar
  11. 11.
    Mikhailichenko, A.I. and Morozov, A.N., Preparation of highly ordered titanium dioxide nanotube films, Perspekt. Mater., 2013, no. 5, pp. 74–78.Google Scholar
  12. 12.
    Huang, D.-G., Liao, S.-J., Liu, J.-M., Dang, Z., and Petrik, L., Preparation of visible-light responsive N–F-codoped TiO2 photocatalyst by a sol–gel-solvothermal method, J. Photochem. Photobiol., A, 2006, vol. 184, no. 3, pp. 282–288. CrossRefGoogle Scholar
  13. 13.
    Li, D., Ohashi, N., Hishita, S., Kolodiazhnyi, T., and Haneda, H., Origin of visible-light-driven photocatalysis: A comparative study on N/F-doped and N-F-codoped TiO2 powders by means of experimental characterizations and theoretical calculations, J. Solid State Chem., 2005, vol. 178, no. 11, pp. 3293–3302. CrossRefGoogle Scholar
  14. 14.
    Seibel, H.A. II, Karen, P., Wagner, T.R., and Woodward, P.M., Synthesis and characterization of color variants of nitrogen- and fluorine-substituted TiO2, J. Mater. Chem., 2009, vol. 19, no. 4, pp. 471–477. CrossRefGoogle Scholar
  15. 15.
    Giannakas, A.E., Seristatidou, E., Deligiannakis, Y., and Konstantinou, I., Photocatalytic activity of N‑doped and N–F co-doped TiO2 and reduction of chromium(VI) in aqueous solution: An EPR study, Appl. Catal., B, 2013, vols. 132–133, pp. 460–468. CrossRefGoogle Scholar
  16. 16.
    Thomas, G. and Goringe, M.J., Transmission Electron Microscopy of Materials, New York: Wiley, 1979.Google Scholar
  17. 17.
    Vinogradov, A.S., Fedoseenko, S.I., Vyalikh, D.V., Molodtsov, S.L., Adamchuk, V.K., Laubschat, C., and Kaindl, G., High resolution F1s absorption spectra of solid fluorides of 3d elements, Opt. Spectrosc., 2002, vol. 93, no. 6, pp. 862–869. CrossRefGoogle Scholar
  18. 18.
    Yang, X., Cao, C., Erickson, L., Hohn, K., Maghirang, R., and Klabunde, K., Photo-catalytic degradation of Rhodamine B on C-, S-, N-, and Fe-doped TiO2 under visible-light irradiation, Appl. Catal., B, 2009, vol. 91, nos. 3–4, pp. 657–662. CrossRefGoogle Scholar
  19. 19.
    Li, D., Haneda, H., Labhsetwar, N.K., Hishita, S., and Ohashi, N., Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies, Chem. Phys. Lett., 2005, vol. 401, pp. 579–584. CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. I. Mikhailichenko
    • 1
  • A. N. Morozov
    • 1
    Email author
  • A. V. Denisenko
    • 1
  1. 1.Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations