Advertisement

Structural Study of Li–Fe–P–O Powder Synthesized by the Extraction-Pyrolytic Method

  • T. N. PatrushevaEmail author
  • S. D. Kirik
  • Yu. L. Mikhlin
  • A. I. Khol’kin
TECHNOLOGY OF INORGANIC SUBSTANCES AND MATERIALS
  • 9 Downloads

Abstract

Iron lithium phosphorus oxide, which is promising for use as a cathode material in lithium-ion batteries, has been synthesized by the extraction-pyrolytic method and further investigated. The possibility of obtaining phosphorus-containing Li–Fe–P–O cathode materials using di-(2-ethylhexyl)phosphoric acid has been shown. Structural and optical studies of Li–Fe–P–O dispersed material have been carried out using X-ray photoelectron spectroscopy and X-ray diffraction. The conditions for the formation of crystalline phases of these dispersed materials have been established. It has been shown using spectroscopic methods that the material contains carbon in its composition, which helps improve electron mobility.

Keywords:

lithium iron phosphate oxide extraction di-(2-ethylhexyl)phosphoric acid X-ray photoelectron spectroscopy X-ray diffraction 

Notes

REFERENCES

  1. 1.
    Kulova, T.L., New electrode materials for lithium-ion batteries (Review), Russ. J. Electrochem., 2013, vol. 49, no. 1, pp. 1–25.  https://doi.org/10.1134/S1023193513010102 CrossRefGoogle Scholar
  2. 2.
    Ravet, N., Chouinard, Y., Magnan, J.F., Besner, S., Gauthier, M., and Armand, M., Electroactivity of natural and synthetic triphylite, J. Power Sources, 2001, vols. 97–98, pp. 503–507.  https://doi.org/10.1016/S0378-7753(01)00727-3 CrossRefGoogle Scholar
  3. 3.
    Kosova, N.V. and Devyatkina, E.T., Synthesis of nanosized materials for lithium-ion batteries by mechanical activation. Studies of their structure and properties, Russ. J. Electrochem., 2012, vol. 48, no. 3, pp. 320–329.  https://doi.org/10.1134/S1023193512020073 CrossRefGoogle Scholar
  4. 4.
    Yuan, S. and Dai, K., Optimization of preparing LiFePO4 for lithium-ion batteries via carbothermal reduction route, Russ. J. Electrochem., 2011, vol. 47, no. 12, pp. 1389–1393.  https://doi.org/10.1134/S1023193511120147 CrossRefGoogle Scholar
  5. 5.
    Barker, J., Heap, R.J., and Roche, N., A new low cost synthesis method for LiFePO4, 224th ECS Meeting Abstracts (San Francisco, 2013), Pennington, N.J.: Electrochemical Society, 2013, vol. MA2013-02, p. 996.Google Scholar
  6. 6.
    Qiao, Y., Guo, H., Liu, G., and Gao, J., Optimization of hydrothermally synthesized LiFePO4 nanoscaled particles for lithium-ion batteries, Russ. J. Electrochem., 2013, vol. 49, no. 5, pp. 466–469.  https://doi.org/10.1134/S1023193513050091 CrossRefGoogle Scholar
  7. 7.
    Zhang, L. and Liang, H., Enhancing electrochemical performance of LiFePO4 by in situ reducing flexible graphene, Russ. J. Electrochem., 2013, vol. 49, no. 10, pp. 955–959.  https://doi.org/10.1134/S1023193513150020 CrossRefGoogle Scholar
  8. 8.
    Bai, Y.M., Chen, H., and Han, S.C., Effect of carbon sources on the morphology of LiFePO4 cathode materials for lithium ion batteries, Russ. J. Electrochem., 2011, vol. 47, no. 1, pp. 84–88.  https://doi.org/10.1134/S1023193511010034 CrossRefGoogle Scholar
  9. 9.
    Benoit, C. and Franger, S., Chemistry and electrochemistry of lithium iron phosphate, J. Solid State Electrochem., 2008, vol. 12, nos. 7–8, pp. 987–993.  https://doi.org/10.1007/s10008-007-0443-9 CrossRefGoogle Scholar
  10. 10.
    Beninati, S., Damen, L., and Mastragostino, M., Fast sol–gel synthesis of LiFePO4/C for high power lithium-ion batteries for hybrid electric vehicle application, J. Power Sources, 2009, vol. 194, no. 2, pp. 1094–1098.  https://doi.org/10.1016/j.jpowsour.2009.06.035 CrossRefGoogle Scholar
  11. 11.
    Gao, M., Liu, N., Li, Z., Wang, W., Li, C., Hao Z., Yilei C., Zhongbao Y., Huang Y., A gelatin-based sol–gel procedure to synthesize the LiFePO4/C nanocomposite for lithium ion batteries, Solid State Ionics, 2014, vol. 258, pp. 8–12.  https://doi.org/10.1016/j.ssi.2014.01.041 CrossRefGoogle Scholar
  12. 12.
    Khol’kin, A.I. and Patrusheva, T.N., Ekstraktsionno-piroliticheskii metod. Poluchenie funktsional’nykh oksidnykh materialov (An Extraction–Pyrolysis Method: Preparation of Functional Oxide Materials), Moscow: KomKniga, 2006.Google Scholar
  13. 13.
    Peppard, D.F., Mason, G.W., Maier, J.L., and Driscoll, W.J., Fractional extraction of the lanthanides as their di-alkyl orthophosphates, J. Inorg. Nucl. Chem., 1957, vol. 4, nos. 5–6, pp. 334–343.  https://doi.org/10.1016/0022-1902(57)80016-5 CrossRefGoogle Scholar
  14. 14.
    Le Bail, A., Duroy, H., and Fourquet, J.L., Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction, Mater. Res. Bull., 1988, vol. 23, no. 3, pp. 447–452.  https://doi.org/10.1016/0025-5408(88)90019-0 CrossRefGoogle Scholar
  15. 15.
    Genkina, E.A., Maximov, B.A., Timofeeva, V.A., Bykov, A.B., and Mel’nikov, O.K., Synthesis and atomic structure of a new double pyrophosphate LiFeP2O7, Dokl. Akad. Nauk SSSR, 1985, vol. 284, no. 4, pp. 864–867.Google Scholar
  16. 16.
    Riou, D., Nguyen, N., Benloucif, R., and Raveau, B., LiFeP2O7: Structure and magnetic properties, Mater. Res. Bull., 1990, vol. 25, no. 11, pp. 1363–1369.  https://doi.org/10.1016/0025-5408(90)90218-Q CrossRefGoogle Scholar
  17. 17.
    Rousse, G., Rodríguez-Carvajal, J., Wurm, C., and Masquelier, C., A neutron diffraction study of the antiferromagnetic diphosphate LiFeP2O7, Solid State Sci., 2002, vol. 4, no. 7, pp. 973–978.  https://doi.org/10.1016/S1293-2558(02)01347-X CrossRefGoogle Scholar
  18. 18.
    Bih, H., Saadoune, I., Ehrenberg, H., and Fuess, H., Crystal structure, magnetic and infrared spectroscopy studies of the LiCryFe1 − yP2O7 solid solution, J. Solid State Chem., 2009, vol. 182, no. 4, pp. 821–826.  https://doi.org/10.1016/j.jssc.2009.01.005 CrossRefGoogle Scholar
  19. 19.
    Ramana, C.V., Ait-Salah, A., Utsunomiya, S., Mauger, A., Gendron, F., and Julien, C.M., Novel lithium iron pyrophosphate (LiFe1.5P2O7) as a positive electrode for Li-ion batteries, Chem. Mater., 2007, vol. 19, no. 22, pp. 5319–5324.  https://doi.org/10.1021/cm071526m CrossRefGoogle Scholar
  20. 20.
    Blidberg, A., Häggström, L., Ericsson, T., Tengstedt, C., Gustafsson, T., and Björefors, F., Structural and electronic changes in Li2FeP2O7 during electrochemical cycling, Chem. Mater., 2015, vol. 27, no. 11, pp. 3801–3804.  https://doi.org/10.1021/acs.chemmater.5b00440 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • T. N. Patrusheva
    • 1
    • 2
    Email author
  • S. D. Kirik
    • 2
  • Yu. L. Mikhlin
    • 3
  • A. I. Khol’kin
    • 4
  1. 1.Baltic State Technical University VoenmekhSt. PetersburgRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia
  3. 3.Institute of Chemistry and Chemical Technology, Russian Academy of SciencesKrasnoyarskRussia
  4. 4.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations